Свойства степенных корней. Свойства корней: формулировки, доказательства, примеры

Ситбаталова Алма Капаровна

учитель математики

лицей № 15

г. Астана

«Спорьте, заблуждайтесь, ошибайтесь, но, ради Бога, размышляйте, и, хотя криво – да сами».

Г. Лессинг.

Чтобы развить у школьников способность работать с информацией, научить их самостоятельно мыслить, уметь работать в команде, можно использовать различные педагогические технологии. Автор отдает предпочтение групповой форме работы.

11 класс

Тема урока: Корень n-ой степени и его свойства.

Цель урока:

Формирование у учащихся целостного представления о корне n -ой степени, навыков сознательного и рационального использования свойств корня при решении различных задач; понимание принципов упрощения выражений, содержащих радикал . Проверить уровень усвоения учащимися вопросов темы.

Задачи урока:

1. Актуализировать необходимые знания и умения. Дать понятие корня n -ой степени, рассмотреть его свойства.

2. Организовать мыслительную деятельность учащихся для решения проблемы (выстроить необходимую коммуникацию). Способствовать развитию алгоритмического, творческого мышления, развивать навыки самоконтроля. Способствовать развитию интереса к предмету, активности.

3. Воспитывать уважение к чужому мнению и чужому труду через анализ и присвоение нового способа деятельности, умение работать в команде, выражать собственное мнение, давать рекомендации.

Оборудование:

Компьютер, проектор и экран для демонстрации презентации; карточки с заданием для работы в группах; карточки с таблицей для оценки присвоения нового вида деятельности; чистые двойные листы для выполнения учащимися разноуровневой самостоятельной работы; карточки с разноуровневыми заданиями.

Тип урока:

Комбинированный (систематизация и обобщение, усвоение новых знаний, проверка и оценка знаний).

Формы организации учебной деятельности :

Индивидуальная, полилог, диалог, работа с текстом слайда, учебника.

Методы :

Наглядный, словесный, графический, условно-символический, исследовательский.

Мотивация познавательной деятельности учащихся:

Сообщить учащимся, что изучение свойств корня n -ой степени является обобщением уже известных учащимся свойств степени.

План урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока , включение в работу ).

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний).

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция).

    Контроль и самоконтроль (Проверка знаний).

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения).

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы).

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания).

Ход урока:

    Организационно-мотивационный ( приветствие учителя , принятие темы, цели урока, включение в работу, 1-2 мин ). Приветствие учащихся, сообщение темы «Корень n – й степени и его свойства», сообщение цели и способа деятельности.

    Актуализация знаний (систематизация и обобщение, усвоение новых знаний, 15 мин).

Повторение опорных знаний (систематизация и обобщение):

Класс делится на три группы.

Деятельность учителя: задает вопросы:

    Определение арифметического квадратного корня.

    Свойства арифметического квадратного корня.

    Свойства степени с натуральным показателем.

Записывают свойства на листе ,

,

Отвечают на вопросы ,

Выполняют задания.

Усвоение новых знаний:

Деятельность учителя: Вводятся новые понятия:

    ОПРЕДЕЛЕНИЕ. Корнем n -ной степени из числа a называется такое число, n -ная степень которого равна a .

    ОПРЕДЕЛЕНИЕ. Арифметическим корнем n -ной степени из числа а называют неотрицательное число, n -ная степень которого равна a .

    Основные свойства арифметических корней n -ной степени.

При четном n существует два корня n -ной степени из любого положительного числа a , корень n -ной степени из числа 0 равен рулю, корень четной степени из отрицательных чисел не существует. При нечетном n существует корень n -ной из любого числа a и притом только один.

Для любых чисел выполняются равенства:

1) ; 3) ;

2) 4) ;

5) ; 6) .

    Примеры с заданиями даются на слайде:

Деятельность учащихся в группах:

Самостоятельно записывают свойства на листе ,

Проверяют правильность по слайду ,

Отвечают на вопросы ,

Выполняют задания.

    Применение изученного ( установление правильности и осознанности усвоения нового учебного материала; выявление пробелов и неверных представлений и их коррекция, 15 мин).

Деятельность учителя: Дает комментарий к дальнейшим действиям:

Работа в группах по этапам ,

Перед каждой группой лежит листок с одним и тем же заданием, но с разными условиями (на слайде «Упростить выражение») :

- 1 этап «Генерация идей».

1 этап:

    Поставить цифру 1.

    Записать порядок предполагаемых действий, необходимых для выполнения задания.

    Руководство деятельностью группы (добиться включенности в работу всех учащихся) .

- 2 этап «Анализ идей».

    Знакомство с инструкцией деятельности на слайде:

    Этап:

    Поставить цифру 2.

    Выполнить задание по предложенному алгоритму усовершенствовав его при необходимости.

    Сделать и записать вывод, можно ли выполнить задание по предложенному алгоритму.

    Руководство деятельностью групп .

- 3этап «Экспертиза».

    :

    Этап:

    Поставить цифру 3.

    Проверить правильность выполнения задания, согласно алгоритма.

    Сделать и записать вывод, удалось ли составить необходимый алгоритм, и верно выполнить задание.

- 4этап «Предъявление результатов».

Знакомство с инструкцией деятельности на слайде :

    Этап:

    Оценить деятельность всех групп на каждом этапе.

    Индивидуально выбрать этап, на котором было легче работать, и этап, на котором возникали трудности.

Деятельность учащихся в группах:

на 1 этапе: анализируют задания , выполняют необходимые действия ,

на 2 этапе: анализируют алгоритм, предложенный другой группой , при необходимости вносят коррективы, выполняют задания ,

на 3 этапе: анализируют работу предыдущих групп, делают вывод ,

на 4 этапе: анализируют сделанный вывод , сверяют правильность решения с ответом на слайде , заполняют карточки с таблицей, выбирая роль, в которой более успешны.

Минута здоровья (гимнастика для глаз).

    Контроль и самоконтроль (Проверка знаний, 7 мин).

Деятельность учителя: Дает инструкцию по выполнению самостоятельной работы:

    Все учащиеся выполняют задания 1 уровня (на «3») задания на карточках слайде:

Самостоятельная работа. Оценка «3».

I вариант.

а)

б)

2). Сравнить числа:

II вариант.

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

    :

Самостоятельная работа. Оценка «3».

Ответы :

I вариант

1). а) 11

б) 15

2). <

II вариант

1). а) 7

б) 15

2. >

3. Кто справился с заданием 1 уровня?

4. Учащиеся, справившиеся с 1 уровнем, переходят к заданиям 2 уровня (на «4»), те, кто не справился, остаются на 1 уровне задания на слайде, на карточках :

Самостоятельная работа.

Оценка «3».

1). Найти значение числового выражения:

а)

б)

2). Сравнить числа:

Оценка «4».

1). Решить уравнение:

а)

б)

2). Упростить выражение:

    Самопроверка по ответам на слайде :

Самостоятельная работа.

Ответы :

Оценка «3».

1). а) 13

б) 6

2). <

Оценка «4».

1). а)

б)

2). 2а

6. Кто перешел на 3 уровень?

Кто остался на 2 уровне?

Кто перешел на 2 уровень?

Кто остался на 1 уровне?

7. Учащиеся, получившие «4» выполняют задания 3 уровня (на «5»).

Учащиеся, не получившие «4» и справившиеся с 1 уровнем, выполняют задания 2 уровня.

Учащиеся, не получившие «3», выполняют задания 1 уровня задания на карточках на слайде:

Самостоятельная работа.

Оценка «4».

Оценка «5».

Оценку «4»?

Оценку «3»?

10. Кто не справился с заданиями 1 уровня?

Деятельность учащихся в группах:

    Выполняют задания.

    Выполняют самопроверку, ставя оценку «3», если выполнены все задания .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 из 3 заданий 2 уровня .

    Предъявляют результаты.

    Выполняют задания.

    Выполняют самопроверку: ставят «3», если выполнены все задания 1 уровня; ставят «4», если выполнены 2 задания 2 уровня; ставят оценку «5», если выполнено хотя бы 1 задание из 2-х .

    Предъявляют результаты.

    Рефлексия (Мобилизация учащихся на рефлексию своего поведения (мотивации, способов деятельности, общения, 3 мин).

Деятельность учителя: Дает комментарии по написанию «Синквейна», инструкция на слайде:

Синквейн.

1 строка – заявляется тема или предмет (одно существительное);

2 строка – описание предмета (два прилагательных или причастия);

3 строка – характеризуются действия предмета (три глагола);

4 строка – выражение отношения автора к предмету (четыре слова);

5 строка – синоним, обобщающий или расширяющий смысл предмета (одно слово).

Деятельность учащихся в группах:

Знакомятся с алгоритмом написания Синквейна,

Пишут Синквейн на листах с самостоятельной работой,

По желанию зачитывают Синквейн,

Сдают листы на проверку.

    Подведение итогов (Дать анализ и оценку успешности достижения цели и наметить перспективу последующей работы, 1-2 мин).

Деятельность учителя: Анализ оценки деятельности на разных этапах урока: Почему вам было легче (сложнее) в той или иной роли? Оценивается работа каждого учащегося.

Деятельность учащихся в группах: отвечают на вопрос.

    Домашнее задание (Обеспечение понимания цели, содержания и способов выполнения домашнего задания, 1-2 мин).

Деятельность учителя: Дает инструкцию по выполнению домашней работы: (А. Абылкасымова, естеств.-мат. напр.)
§ 5, № 83 (2; 4), № 84 (2; 3), № 86, 87 (3; 4), № 89.

‹ ›

Чтобы скачать материал, введите свой E-mail, укажите, кто Вы, и нажмите кнопку

Видеоурок 2: Свойства корня степени n > 1

Лекция: Корень степени n > 1 и его свойства

Корень


Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х 1 = 2 и х 2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.


Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x 2 . Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.


Любой корень - это иррациональное число . К иррациональным числам относятся корни, непериодические бесконечные дроби.


Квадратный корень - это неотрицательное число "а", подкоренное выражение которого равно данному числу "а" в квадрате.

Например,


То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х 1 = 4, х 2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.


4. Существует свойство, обратное данному - внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter