Действительные числа, изображение на числовой оси. Изображение чисел на прямой

Числовая прямая, числовая ось, - это прямая на которой изображаются действительные числа. На прямой выбирают начало отсчета – точку О (точка О изображает 0) и точку L, изображающую единицу. Точка L обычно стоит справа от точки О. Отрезок ОL называют единичным отрезком.

Точки, стоящие справа от точки О изображают положительные числа. Точки стоящие слева от точки. О, изображают отрицательные числа. Если точка Х изображает положительное число х, то расстояние ОХ = х. Если точка Х изображает отрицательное число х, то расстояние ОХ = - х.

Число, показывающее положение точки на прямой, называется координатой этой точки.

Точка V изображенная на рисунке имеет координату 2, а точка H имеет координату -2,6.

Модулем действительного числа называется расстояние от начала отсчета до точки, соответствующей этому числу. Обозначают модуль числа х, так: | х |. Очевидно, что | 0 | = 0.

Если число х больше 0, то | х | = х, а если х меньше 0, то | х | = - х. На этих свойствах модуля, основано решение многих уравнений и неравенств с модулем.

Пример: Решить уравнение | х – 3 | = 1.

Решение: Рассмотрим два случая – первый случай, когда х -3 > 0, и второй случай, когда х - 3 0.

1. х - 3 > 0, х > 3.

В этом случае | х – 3 | = х – 3.

Уравнение принимает вид х – 3 = 1, х = 4. 4 > 3 – удовлетворят первому условию.

2. х -3 0, х 3.

В этом случае | х – 3 | = - х + 3

Уравнение принимает вид х + 3 = 1, х = - 2. -2 3 – удовлетворят второму условию.

Ответ: х = 4, х = -2.

Числовые выражения.

Числовое выражение – это совокупность одного или нескольких чисел и функций, соединенных знаками арифметических операций и скобками.
Примеры числовых выражений:

Значением числового выражения является число.
Операции в числовом выражении выполняются в следующей последовательности:

1. Действия в скобках.

2. Вычисление функций.

3. Возведение в степень

4. Умножение и деление.

5. Сложение и вычитание.

6. Однотипные операции выполняются слева на право.

Так значением первого выражения будет само число 12,3
Для того чтобы вычислить значение второго выражения, действия будем выполнять в следующей последовательности:



1. Выполним действия в скобках в следующей последовательности - сначала 2 возведем в третью степень, затем от полученного числа отнимем 11:

3 4 + (23 - 11) = 3 4 + (8 - 11) = 3 4 + (-3)

2. Умножим 3 на 4:

3 4 + (-3) = 12 + (-3)

3. Выполним последовательно операции слева направо:

12 + (-3) = 9.
Выражение с переменными – это совокупность одного или нескольких чисел, переменных и функций, соединенных знаками арифметических операций и скобками. Значения выражений с переменными зависят от значений, входящих в него переменных. Последовательность выполнения операций здесь та же, что и для числовых выражений. Выражения с переменными иногда бывает полезно упрощать, выполняя различные действия – вынесение за скобки, раскрытие скобок, группировки, сокращение дробей, приведение подобных и т.д. Так же для упрощения выражений часто используют различные формулы, например, формулы сокращенного умножения, свойства различных функций и т. д.

Алгебраические выражения .

Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение должно быть конечным.

Пример алгебраического выражения:

«Алгебраическое выражение» - понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.

Видеоурок «Геометрический смысл модуля действительного числа» - наглядное пособие для урока математики по соответствующей теме. В видеоуроке детально и наглядно рассматривается геометрический смысл модуля, после чего на примерах раскрывается, как находится модуль действительного числа, причем решение сопровождается рисунком. Материал может быть использован на этапе объяснения новой темы в качестве отдельной части урока или обеспечения наглядностью объяснения учителя. Оба варианта способствуют повышению эффективности урока математики, помогают учителю достичь целей урока.

В данном видеоуроке присутствуют построения, которые наглядно демонстрируют геометрический смысл модуля. Чтобы демонстрация была более наглядной, эти построения выполняются с применением анимационных эффектов. Чтобы учебный материал легче запоминался, важные тезисы выделены цветом. Подробно рассматривается решение примеров, которое за счет анимационных эффектов подается структурировано, последовательно, понятно. При составлении видео были использованы инструменты, которые помогают сделать видеоурок эффективным современным инструментом обучения.

Виде начинается с представления темы урока. На экране выполняется построение - изображен луч, на котором отмечены точки aи b, расстояние между которыми отмечено как ρ(a;b). Напоминается, что расстояние измеряется на координатном луче вычитанием из большего числа меньшего, то есть для данного построения расстояние равно b-aдля b>aи равно a-b при a>b. Ниже демонстрируется построение, на котором отмеченная точка а лежит правее b, то есть соответствующее ей числовое значение больше b. Ниже отмечен еще один случай, когда положение точек aи b совпадает. В этом случае расстояние между точками равно нулю ρ(a;b)=0. Все вместе эти случаи описываются одной формулой ρ(a;b)=|a-b|.

Далее рассматривается решение задач, в которых применяются знания о геометрическом смысле модуля. В первом примере необходимо решить уравнение |х-2|=3. Отмечается, что это аналитическая форма записи данного уравнения, которую для поиска решения переводим на геометрический язык. Геометрически данная задача означает, что необходимо найти точки х, для которых будет верно равенство ρ(х;2)=3. На координатной прямой это будет означать равноудаленность точек х от точки х=2 на расстоянии 3. Чтобы продемонстрировать решение на координатной прямой, изображается луч, на котором отмечена точка 2. На расстоянии 3 от точки х=2 отмечаются точки -1 и 5. Очевидно, что данные отмеченные точки и будут решением уравнения.

Для решения уравнения |x+3,2|=2 предлагается привести его сначала к виду |a-b|, чтобы решить задание на координатной прямой. После преобразования уравнение получает вид |х-(-3,2)|=2. Это означает, что расстояние между точкой -3,2 и искомыми точками будет равно 2, то есть ρ(х;-3,2)=2. На координатной прямой отмечается точка -3,2. От нее на расстоянии 2 располагаются точки -1,2 и -5,2. Эти точки отмечаются на координатной прямой и указаны как решение уравнения.

Решение еще одного уравнения |x|=2,7 рассматривает случай, когда искомые точки располагаются на расстоянии 2,7 от точки 0. Уравнение переписывается в виде |x-0|=2,7. При этом указано, что расстояние до искомых точек определяется как ρ(х;0)=2,7. На координатной прямой отмечается начало отсчета точка 0. На расстоянии 2,7 от точки 0 размещаются точки -2,7 и 2,7. Эти точки отмечаются на построенной прямой, они и являются решениями уравнения.

Для решения следующего уравнения |x-√2|=0 не требуется геометрическая интерпретация, так как если модуль выражения равен нулю, это означает, что это выражение равно нулю, то есть x-√2=0. Из уравнения следует, что х=√2.

В следующем примере рассматривается решение уравнений, которые перед решением требуют преобразования. В первом уравнении |2x-6|=8 перед х есть числовой коэффициент 2. Чтобы избавиться от коэффициента и перевести уравнение на геометрический язык ρ(х;а)=b, выносим общий множитель за скобки, получая |2(x-3)|=2|x-3|. После этого правая и левая части уравнения сокращаются на 2. Получаем уравнение вида |x-3|=4. Данное уравнение аналитического вида переводится на геометрический язык ρ(х;3)=4. На координатной прямой отмечаем точку 3. От этой точки откладываем точки, расположенные на расстоянии 4. Решением уравнения будут точки -1 и 7, которые отмечаются на координатной прямой. Второе рассмотренное уравнение |5-3x|=6 также содержит числовой коэффициент перед переменной х. Чтобы решить уравнение, коэффициент 3 выносится за скобки. Уравнение принимает вид |-3(x-5/3)|=3|x-5/3|. Правая и левая части уравнения могут быть сокращены на 3. После этого получается уравнение вида |x-5/3|=2. Переходим от аналитической формы к геометрической интерпретации ρ(х;5/3)=2. К решению строится рисунок, на котором изображается координатная прямая. На этой прямой отмечается точка 5/3. На расстоянии 2 от точки 5/3 располагаются точки -1/3 и 11/3. Эти точки и являются решениями уравнения.

Последнее рассмотренное уравнение |4x+1|=-2. Для решения данного уравнения не требуется преобразований и геометрического представления. В левой части уравнения очевидно получается неотрицательное число, а правая часть содержит число -2. Поэтому данное уравнение не имеет решений.

Видеоурок «Геометрический смысл модуля действительного числа» может применяться на традиционном уроке математики в школе. Материал может стать полезным учителю, осуществляющему дистанционное образование. Подробное понятное объяснение решения заданий, в которых используется функция модуля, поможет освоить материал ученику, который осваивает тему самостоятельно.

Мы уже знаем, что множество действительных чисел $R$ образуют рациональные и иррациональные числа .

Рациональные числа всегда можно представить в виде десятичных дробей (конечных или бесконечных периодических).

Иррациональные числа записываются в виде бесконечных, но непериодических десятичных дробей.

Ко множеству действительных чисел $R$ принадлежат также элементы $-\infty $ и $+\infty $, для которых выполняются неравенства $-\infty

Рассмотрим способы представления действительных чисел.

Обычные дроби

Обычные дроби записывают с помощью двух натуральных чисел и горизонтальной дробной черты. Дробная черта фактически заменяет знак деления. Число под чертой - это знаменатель дроби (делитель), число над чертой - числитель (делимое).

Определение

Дробь называется правильной, если её числитель меньше знаменателя. И наоборот, дробь называется неправильной, если её числитель больше знаменателя или равен ему.

Для обычных дробей существуют простые, практически очевидные, правила сравнения ($m$,$n$,$p$ - натуральные числа):

  1. из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, то есть $\frac{m}{p} >\frac{n}{p} $ при $m>n$;
  2. из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, то есть $\frac{p}{m} >\frac{p}{n} $ при $ m
  3. правильная дробь всегда меньше единицы; неправильная дробь всегда больше единицы; дробь, у которой числитель равен знаменателю, равна единице;
  4. любая неправильная дробь больше любой правильной.

Десятичные числа

Запись десятичного числа (десятичной дроби) имеет вид: целая часть, десятичная запятая, дробная часть. Десятичную запись обычной дроби можно получить, выполнив деление "углом" числителя на знаменатель. При этом может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Определение

Цифры дробной части называют десятичными знаками. При этом первый разряд после запятой называют разрядом десятых, второй - разрядом сотых, третий - разрядом тысячных и т.д.

Пример 1

Определяем значение десятичного числа 3,74. Получаем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Десятичное число можно округлить. При этом следует указать разряд, до которого выполняется округление.

Правило округления состоит в следующем:

  1. все цифры правее данного разряда заменяют нулями (если эти цифры находятся до запятой) или отбрасывают (если эти цифры находятся после запятой);
  2. если первая цифра, следующая за данным разрядом, меньше 5, то цифру данного разряда не меняют;
  3. если первая цифра, следующая за данным разрядом, 5 и более, то цифру данного разряда увеличивают на единицу.

Пример 2

  1. Округлим число 17302 до тысяч: 17000.
  2. Округлим число 17378 до сотен: 17400.
  3. Округлим число 17378,45 до десятков: 17380.
  4. Округлим число 378,91434 до сотых: 378,91.
  5. Округлим число 378,91534 до сотых: 378,92.

Преобразование десятичного числа в обычную дробь.

Случай 1

Десятичное число представляет собой конечную десятичную дробь.

Способ преобразования демонстрирует следующий пример.

Пример 2

Имеем: $3,74=3+\frac{7}{10} +\frac{4}{100} $.

Приводим к общему знаменателю и получаем:

Дробь можно сократить: $3,74=\frac{374}{100} =\frac{187}{50} $.

Случай 2

Десятичное число представляет собой бесконечную периодическую десятичную дробь.

Способ преобразования основан на том, что периодическую часть периодической десятичной дроби можно рассматривать как сумму членов бесконечной убывающей геометрической прогрессии.

Пример 4

$0,\left(74\right)=\frac{74}{100} +\frac{74}{10000} +\frac{74}{1000000} +\ldots $. Первый член прогрессии $a=0,74$, знаменатель прогрессии $q=0,01$.

Пример 5

$0,5\left(8\right)=\frac{5}{10} +\frac{8}{100} +\frac{8}{1000} +\frac{8}{10000} +\ldots $. Первый член прогрессии $a=0,08$, знаменатель прогрессии $q=0,1$.

Сумма членов бесконечной убывающей геометрической прогрессии вычисляется по формуле $s=\frac{a}{1-q} $, где $a$ - первый член, а $q$ - знаменатель прогрессии $ \left (0

Пример 6

Переведем бесконечную периодическую десятичную дробь $0,\left(72\right)$ в обычную.

Первый член прогрессии $a=0,72$, знаменатель прогрессии $q=0,01$. Получаем: $s=\frac{a}{1-q} =\frac{0,72}{1-0,01} =\frac{0,72}{0,99} =\frac{72}{99} =\frac{8}{11} $. Таким образом, $0,\left(72\right)=\frac{8}{11} $.

Пример 7

Переведем бесконечную периодическую десятичную дробь $0,5\left(3\right)$ в обычную.

Первый член прогрессии $a=0,03$, знаменатель прогрессии $q=0,1$. Получаем: $s=\frac{a}{1-q} =\frac{0,03}{1-0,1} =\frac{0,03}{0,9} =\frac{3}{90} =\frac{1}{30} $.

Таким образом, $0,5\left(3\right)=\frac{5}{10} +\frac{1}{30} =\frac{5\cdot 3}{10\cdot 3} +\frac{1}{30} =\frac{15}{30} +\frac{1}{30} =\frac{16}{30} =\frac{8}{15} $.

Действительные числа можно изображать точками числовой оси.

При этом числовой осью мы называем бесконечную прямую, на которой выбрано начало отсчета (точка $O$), положительное направление (указывается стрелкой) и масштаб (для отображения значений).

Между всеми действительными числами и всеми точками числовой оси существует взаимно однозначное соответствие: каждой точке соответствует единственное число и, наоборот, каждому числу соответствует единственная точка. Следовательно, множество действительных чисел является непрерывным и бесконечным так же, как непрерывна и бесконечна числовая ось.

Некоторые подмножества множества действительных чисел называют числовыми промежутками. Элементами числового промежутка являются числа $x\in R$, удовлетворяющие определенному неравенству. Пусть $a\in R$, $b\in R$ и $a\le b$. В этом случае разновидности промежутков могут быть такими:

  1. Интервал $\left(a,\; b\right)$. При этом $ a
  2. Отрезок $\left$. При этом $a\le x\le b$.
  3. Полуотрезки или полуинтервалы $\left$. При этом $ a \le x
  4. Бесконечные промежутки, например, $a

Важное значение имеет также разновидность промежутка, называемая окрестностью точки. Окрестность данной точки $x_{0} \in R$ -- это произвольный интервал $\left(a,\; b\right)$, содержащий эту точку внутри себя, то есть $a 0$ - його радіусом.

Абсолютная величина числа

Абсолютной величиной (или модулем) действительного числа $x$называется неотрицательное действительное число $\left|x\right|$, определяемое по формуле: $\left|x\right|=\left\{\begin{array}{c} {\; \; x\; \; {\rm при}\; \; x\ge 0} \\ {-x\; \; {\rm при}\; \; x

Геометрически $\left|x\right|$ означает расстояние между точками $x$ и 0 на числовой оси.

Свойства абсолютных величин:

  1. из определения следует, что $\left|x\right|\ge 0$, $\left|x\right|=\left|-x\right|$;
  2. для модуля суммы и для модуля разности двух чисел справедливы неравенства $\left|x+y\right|\le \left|x\right|+\left|y\right|$, $\left|x-y\right|\le \left|x\right|+\left|y\right|$, а также $\left|x+y\right|\ge \left|x\right|-\left|y\right|$,$\left|x-y\right|\ge \left|x\right|-\left|y\right|$;
  3. для модуля произведения и модуля частного двух чисел справедливы равенства $\left|x\cdot y\right|=\left|x\right|\cdot \left|y\right|$ и $\left|\frac{x}{y} \right|=\frac{\left|x\right|}{\left|y\right|} $.

На основании определения абсолютной величины для произвольного числа $a>0$ можно также установить равносильность следующих пар неравенств:

  1. если $ \left|x\right|
  2. если $\left|x\right|\le a$, то $-a\le x\le a$;
  3. если $\left|x\right|>a$, то или $xa$;
  4. если $\left|x\right|\ge a$, то или $x\le -a$, или $x\ge a$.

Пример 8

Решить неравенство $\left|2\cdot x+1\right|

Данное неравенство равносильно неравенствам $-7

Отсюда получаем: $-8

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

Оборудование: проектор, экран, персональный компьютер, мультимедийная презентация

Ход урока

1. Организационный момент.

2. Актуализация знаний учащихся.

2.1. Ответить на вопросы учащихся по домашнему заданию.

2.2. Разгадать кроссворд (повторение теоретического материала) (Слайд 2):

  1. Комбинация математических знаков, выражающая какое-нибудь
утверждение. (Формула. )
  • Бесконечные десятичные непериодические дроби. (Иррациональные числа)
  • Цифра или группа цифр, повторяющихся в бесконечной десятичной дроби. (Период. )
  • Числа, используемые для счета предметов. (Натуральные числа.)
  • Бесконечные десятичные периодические дроби. (Рациональные числа.)
  • Рациональные числа + иррациональные числа = ? (Действительные числа.)
  • – Разгадав кроссворд, в выделенном вертикальном столбце прочитайте название темы сегодняшнего урока. (Слайды 3, 4)

    3. Объяснение новой темы.

    3.1. – Ребята, вы уже встречались с понятием модуля, пользовались обозначением |a | . Раньше речь шла только о рациональных числах. Теперь надо ввести понятие модуля для любого действительного числа.

    Каждому действительному числу соответствует единственная точка числовой прямой, и, наоборот, каждой точке числовой прямой соответствует единственное действительное число. Все основные свойства действий над рациональными числами сохраняются и для действительных чисел .

    Вводится понятие модуля действительного числа. (Слайд 5).

    Определение. Модулем неотрицательного действительного числа x называют само это число: |x | = x ; модулем отрицательного действительного числа х называют противоположное число: |x | = – x .

    Запишите в тетрадях тему урока, определение модуля:

    На практике используют различные свойства модулей , например. (Слайд 6) :

    Выполнить устно № 16.3 (а, б) – 16.5 (а, б) на применение определения, свойства модуля. (Слайд 7) .

    3.4. Для любого действительного числа х можно вычислить |x | , т.е. можно говорить о функции y = |x | .

    Задание 1. Построить график и перечислить свойства функции y = |x | (Слайды 8, 9).

    Один ученик на доске строит график функции


    Рис 1 .

    Свойства перечисляются учащимися. (Слайд 10)

    1) Область определения – (– ∞; + ∞) .

    2) у = 0 при х = 0; y > 0 при x < 0 и x > 0.

    3) Функция непрерывная.

    4) у наим = 0 при х = 0, у наиб не существует.

    5) Функция ограничена снизу, не ограничена сверху.

    6) Функция убывает на луче (– ∞; 0) и возрастает на луче }