Трансокеанические подводные кабели связи. Облака в океане, или краткий экскурс в жизнь подводных кабелей

То, что вы видите выше, это подводный кабель связи.

Диаметром он 69 миллиметров, и именно он переносит 99% из всего международного трафика связи (т.е. интернет, телефония и прочие данные). Соединяет он все континенты нашей планеты, за исключением Антарктиды. Эти удивительные волоконно-оптические кабели пересекают все океаны, и длинной они сотни тысяч, да что говорить, миллионы километров.


Карта Мира подводной кабельной сети

Это «CS Cable Innovator», он специально разработан для прокладки волоконно-оптического кабеля и является крупнейшим в своем роде кораблем в мире. Построен он в 1995 году в Финляндии, он 145 метров в длину, а шириной он 24 метра. Он способен перевозить до 8500 тонн волоконно-оптического кабеля. Корабль имеет 80 кают, из которых 42 — каюты офицеров, 36 — каюты экипажа и две каюты класса люкс.
Без технического обслуживания и дозаправки он может трудиться 42 дня, а если его будет сопровождать корабль поддержки, то все 60.

Первоначально, подводные кабели были простыми соединения типа точка-точка. Сейчас же подводные кабели стали сложнее и они могут делиться и разветвляться прямо на дне океана.

С 2012 года провайдера был успешно продемонстрирован подводный канал передачи данных с пропускной способностью в 100 Гбит/с. Тянется он через весь Атлантический океан и длина его равна 6000 километрам. Представьте себе, что три года назад пропускная способность меатлантического канала связи была в 2,5 раза меньше и была равна 40 Гбит/с. Сейчас корабли подобные «CS Cable Innovator» постоянно трудятся дабы обеспечивать нас всё быстрым межконтинентальным интернетом.

Сечение подводного кабеля связи

1. Полиэтилен
2. Майларовое покрытие
3. Многожильные стальные провода
4. Алюминиевая защита от воды
5. Поликарбонат
6. Медная или алюминиевая трубка
7. Вазелин
8. Оптические волокна

По дну моря оптоволоконный кабель укладывается за один раз от одного берега до другого. В некоторых случаях для организации ВОЛС по дну моря/океана требуется несколько кораблей, так как необходимое количество кабеля на одно судно может не поместиться.

Подводные оптоволоконные линии связи делятся на репитерные (с использованием подводных оптических усилителей) и безрепитерные. Первые из них подразделяются на прибрежные линии связи и магистральные трансокеанские (межконтинентальные). Безрепитерные линии связи делятся на прибрежные линии связи и линии связи между отдельными пунктами (между материком и островами, материком и буровыми станциями, между островами). Существуют и линии связи с применением удаленной оптической накачки.

Кабели ВОЛС для прокладки по дну, как правило, состоят из оптического сердечника, токоведущей жилы и внешних защитных покровов. Кабели для безрепитерных оптоволоконных линий имеют такую же структуру, но у них токоведущая жила отсутствует.

Особые проблемы прокладки ВОЛС через водные препятствия (под)водой связаны с ремонтом морских линий связи. Ведь, лежа долгое время на морском дне, кабель становится практически невидимым. Кроме того, течения могут отнести оптоволоконный кабель от места его первоначальной прокладки (даже на многие километры), а рельеф дна сложен и разнообразен. Повреждения кабелю могут наноситься якорями кораблей и представителями морской фауны. Возможно также отрицательное воздействие на него при дноуглубительных работах, установке труб и бурении, а также при подводных землетрясениях и оползнях.

Вот так он выглядит на дне. Каковы экологические последствия прокладки телекоммуникационных кабелей на морском дне? Как это влияет на дно океана и животных, которые там живут? Хотя буквально миллионы километров кабелей связи были размещены на дне моря в течение последнего столетия, это никак не повлияло на жизнь подводных обитателей. Согласно недавнему исследованию, кабель оказывает лишь незначительные воздействия на животных, живущих и находится в пределах морского дна. На фотографии выше мы видим разнообразие морской жизни рядом с подводным кабелем, который пересекает континентальный шельф Half Moon Bay.
Тут кабель всего лишь 3,2 см. толщины.

Многие опасались, что кабельное телевидение загрузит каналы, но на самом деле оно увеличило нагрузку всего лишь на 1 процент. Причем кабельное телевидение, которое может идти по подводным волокнам уже сейчас имеет пропускную способность в 1 Терабит, в то время как спутники дают в 100 раз меньше. И если хотите купить себе такой межатлантический кабель, то он вам обойдется в 200-500 миллионов долларов.

А вот сейчас я вам расскажу про первый кабель через океан. Вот слушайте …

Вопрос о том, как наладить электрическую связь через огромные просторы Атлантического океана, разделяющего Европу и Америку, волновал умы ученых, техников и изобретателей уже с начала сороковых годов. Еще в те времена американский изобретатель пишущего телеграфа Самуэль Морзе высказал уверенность в том, что возможно проложить телеграфный «провод по дну Атлантического океана».

Первая мысль о подводном телеграфировании возникла у английского физика Уитстона, который в 1840 году предложил свой проект соединения Англии и Франции телеграфной связью. Его идея была, однако, отвергнута как неосуществимая. К тому же в то время не умели еще так надежно изолировать провода, чтобы они могли проводить электрический ток, находясь на дне морей и океанов.

Положение изменилось после того, как в Европу доставили вновь открытое в Индии вещество — гуттаперчу, и германский изобретатель Вернер Сименс предложил покрывать ею провода для изоляции. Гуттаперча как нельзя более подходит для изоляции именно подводных проводов, ибо, окисляясь и ссыхаясь в воздухе, она нисколько не изменяется в воде и может сохраняться там неопределенно долгое время. Так был решен важнейший вопрос об изоляции подводных проводов.

23 августа 1850 года в море вышло для прокладки кабеля специальное судно «Голиаф» с буксирным пароходом.

Путь их лежал от Дувра к берегам Франции. Впереди шло военное судно «Вигдеон», указывавшее «Голиафу» и буксиру заранее определенный путь, отмеченный буями с развевавшимися на них флагами.

Все шло хорошо. Установленный на борту парохода цилиндр, на который был намотан кабель, равномерно разматывался, и провод погружался в воду. Через каждые 15 минут к проводу подвешивали груз в 10 килограммов 4 свинца, чтобы он погружался на самое дно. На четвертые сутки «Голиаф> достиг французского берега, кабель был выведен на сушу я соединен с телеграфным аппаратом. В Дувр по подводному кабелю была послана приветственная телеграмма из 100 слов. Огромная толпа, собравшаяся в Дувре у конторы телеграфной компании и с нетерпением ожидавшая вестей из Франции, с большим воодушевлением приветствовала рождение подводной телеграфии.

Увы, эти восторги оказались преждевременными! Первая телеграмма, переданная по подводному кабелю с французского берега в Дувр, оказалась и последней. Кабель внезапно отказался работать. Только через некоторое время узнали причину столь внезапной порчи. Оказалось, что какой-то французский рыбак, закидывая невод, случайно зацепил кабель и вырвал из него кусок.

Но все же, несмотря на первую неудачу, даже самые ярые скептики поверили в подводную телеграфию. Джон Бретт организовал в 1851 году второе акционерное общество для продолжения дела. На этот раз был уже учтен опыт первой прокладки, и новый кабель был устроен по совершенно другому образцу. Этот кабель отличался от первого: он весил 166 тони, в то время как вес первого кабеля не превышал 14 тонн.

На этот раз предприятие увенчалось полным успехом. Специальное судно, укладывавшее кабель, прошло без особых затруднений путь из Дувра до Кале, где конец кабеля был соединен с телеграфным аппаратом, установленным в палатке прямо на прибрежном утесе.

Через год, 1 ноября 1852 года было установлено прямое телеграфное сообщение между Лондоном и Парижем. Вскоре Англия была соединена подводным кабелем с Ирландией, Германией, Голландией и Бельгией. Затем телеграф связал Швецию с Норвегией, Италию - с Сардинией и Корсикой. В 1854-1855 гг. был проложен подводный кабель через Средиземное и Черное моря. По этому кабелю командование союзных войск, осаждающих Севастополь, сносилось со своими правительствами.

После успеха этих первых подводных линий вопрос о прокладке кабеля через Атлантический океан для соединения Америки с Европой телеграфной связью был поставлен уже практически. За это грандиозное дело взялся энергичный американский предприниматель Сайрос Филд, образовавший в 1856 году «Трансатлантическую компанию».

Невыясненным был, в частности, вопрос о том, может ли электрический ток пробежать огромное расстояние в 4-5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самуэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. В ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. Ток легко прошел через громадную цепь, и с этой стороны больше сомнений не было.

Собрав все необходимые предварительные сведения, Филд приступил в феврале 1857 года к изготовлению кабеля. Кабель состоял из семипроволочного медного каната с гуттаперчевой оболочкой. Жилы его были обложены просмоленной пенькой, а снаружи кабель был еще обвит 18 шнурами из 7 железных проволок каждый. В таком виде кабель длиной в 4 тысячи километров весил три тысячи тонн. Это значит, что для его перевозки по железной дороге понадобился бы состав из 183 товарных вагонов.

История прокладки кабеля изобылует массой непредвиденных обстоятельств. Он несколько раз обрывался, спаянные куски «не желали» доставлять енергию к месту назначения.

Неутомимый Сайрое Филд организовал компанию, чтобы еще раз попытаться проложить кабель через неподатливый океан. Изготовленный компанией новый кабель состоял из семипроволочного шнура, изолированного четырьмя слоями. Снаружи кабель был покрыт слоем «просмоленной пеньки и обмотан десятью стальными проволоками. Для прокладки кабеля было приспособлено специальное судно «Грейт Истерн» — в прошлом прекрасно оборудованный океанский пароход, не окупавший расходов по пассажирскому движению и снятый с рейсов.

Уже на другой день после отплытия с Грейт Истерн электротехники обнаружили, что по кабелю прекратилось прохождение тока. Пароход, проделав чрезвычайно сложный и опасный маневр, во время которого чуть было не произошел разрыв кабеля, сделал полный поворот и стал обратно наматывать уже спущенный на дно кабель. Вскоре, когда кабель стал подниматься из воды, все заметили причину порчи: через кабель был проткнут острый железный прут, задевший гуттаперчевую изоляцию. Кабель портился еще дважды. Когда стали поднимать обратно кабель с глубины 4 тысяч метров, он от сильного натяжения оборвался и утонул.

Компания изготовила новый кабель, значительно улучшенный по сравнению с прежним. «Грейт Истерн» был оборудован новыми машинами для укладки кабеля, а также специальными приспособлениями, предназначенными для подъема кабеля со дна. Новая экспедиция отправилась в путь 7 июля 1866 года. На этот раз полный успех увенчал отважное предприятие: «Прейт Истерн» достиг американского берега, проложив, наконец, телеграфный кабель через океан. Этот «кабель действовал почти без перерыва в течение семи лет.

Третий трансатлантический кабель был проложен англоамериканской телеграфной компанией в 1873 году. Он соединял Пти-Минон возле Бреста во Франции с Ньюфаундлендом. В течение последующих 11 лет та же компания проложила между Валенсией и Ньюфаундлендом еще четыре кабеля. В 1874 году была построена телеграфная линия, соединявшая Европу с Южной Америкой.

В 1809 году, то есть через три года после прокладки подводного кабеля через Атлантический океан, была завершена постройка еще одного грандиозного телеграфного предприятия — Индо-европейской линии. Эта линия соединила двойным проводом Калькутту с Лондоном. Длина ее — 10 тысяч километров.

Значительно позже, чем через Атлантику, был проложен телеграфный кабель через весь Великий океан. Так телеграфная сеть опутывала весь земной шар. Благодаря этим линиям практически мгновенно действует всемирная паутина – Интернет.

А я пока напомню вам и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Правообладатель иллюстрации Getty Image caption США полагают, что российские подводные лодки могут перерезать подводные кабели связи

Российские подводные лодки и надводные корабли-шпионы патрулируют мировой океан в опасной близости к проложенным по морскому дну коммуникационным кабелям, сообщила накануне газета New York Times.

Эксперты из ВМС и спецслужб США высказывают опасения, что в случае возникновения конфликта Россия может нанести удар по интернет-кабелям, обеспечивающим глобальные коммуникации.

Пока, правда, нет никаких признаков того, что кто-то собирается перерезать оптоволокно в океане, но высокопоставленные военные чины США и их союзников выражают тревогу в связи активизацией российских вооруженных сил в разных частях мира.

США держат в секрете как данные о военно-морской активности России, так и сведения о своих наблюдениях за маневрами российских подлодок и надводных кораблей, а также планы действий на тот случай, если кабели будут перерезаны.

Русская служба Би-би-си рассматривает проблему обеспечения безопасности подводных оптоволоконных кабелей в вопросах и ответах.

Подлодки России подбираются к американским кабелям?

Западные эксперты по России давно обращают внимание на такую потенциальную опасность, сказал в интервью Би-би-си Кир Джайлс, научный сотрудник Российской и Евроазиатской программы Королевского института международных отношений в Лондоне (Чатэм-хаус).

Правообладатель иллюстрации Getty Image caption В годы холодной войны США и СССР подключались к подводным кабелям в целях шпионажа

Однако, по его словам, попытка отрезать США от глобальной сети вряд ли осуществима из-за огромного количества соединений внутри страны и за ее пределами

"Я сильно сомневаюсь в том, что кто-то намеревается отрезать США", - сказал Джайлс.

В докладе о российской тактике информационной войны, который вскоре обнародует Чатэм-хаус, упоминается эпизод, относящийся к событиям, связанным с военной активностью России в Крыму в начале 2014 года.

Тогда украинские телекоммуникационные компании сообщали о проблемах с интернет-соединениями и мобильной связью.

"Они (Россия) способны нарушать работу инфраструктуры интернета для получения стратегического контроля в конкретном регионе", - говорит Джайлс.

Отрезать же от интернета такую страну как США - задача трудновыполнимая, если вообще возможная.

Правообладатель иллюстрации Getty Image caption Во время Крымской войны телеграфный кабель англичан соединил Балаклаву с Варной и Лондоном

Чтобы лишить один только Нью-Йорк доступа к интернету, нужно перерезать 10 кабелей, замечает эксперт журнала Wired Эндр Блум. Но при этом сохранится возможность обеспечивать трафик по резервным кабелям.

В годы холодной войны и США и СССР не упускали возможности подключаться к подводным кабелям для сбора разведданных.

Если верить Эдварду Сноудену, эта практика активно применяется и сейчас американским Агентством национальной безопасности и британской службой электронной разведки GCHQ.

Где проложены "провода мирового интернета"?

"Где не слышно ни звука, ни эха, в пустынях придонной тьмы / По равнинам из серой грязи в кожухах протянулись мы", - писал Редьярд Киплинг о телеграфных кабелях в середине XIX века.

Правообладатель иллюстрации TeleGeography Image caption Подводные кабели опутали по дну океанов весь мир, как показано на крате TeleGeography 2015 года

Сегодня оптоволоконные кабели, проложенные по суше и под водой, опутывают Землю, словно паутина, как видно на новой карте подводных кабелей компании TeleGeography.

В 2013 году, как пишет Popular Mechanics, по дну мирового океана тянулись более 200 кабелей. В 2014 их насчитывалось уже 285.

Самые длинные кабели проложены через Атлантический и Тихий океаны. Протяженность тихоокеанского кабеля Southern Cross ("Южный крест") почти 30 тысяч км.

Что угрожает кабелям?

Кабели, хотя и прокладываются на большой глубине, порой в несколько километров, уязвимы для стихийных бедствий и техногенных катастроф, корабельных якорей, тралов рыболовецких судов и зубов акул.

Авария на АЭС "Фукусима" в Японии в марте 2011 года сопровождалась серией подводных оползней. Несколько кабелей были погребены многокилометровой толщей породы, что сделало их недоступными.

Пожар в окрестностях морского порта Александрия в Египте в феврале 2013 года повредил шесть подводных кабелей и нарушил интернет-соединения на восточном побережье Африки и на юге Европы.

В марте 2013 года в Александрии была арестована группа людей, которых обвинили в том, что они перерезали четыре подводных кабеля системы трансконтинентальной связи протяженностью более 20 тысяч километров между Сингапуром и Францией.

Большинство компаний, осуществляющих прокладку подводных кабелей, тянут не одну, а несколько "жил". Зачастую пользователи интернета не замечают обрывов связи: соединение переводят на резервные и параллельные линии.

Как защитить кабель?

"Инженеры постоянно работают над совершенствованием защиты кабелей и поисками оптимальных маршрутов прокладки. Не уверен, что можно сконструировать нечто, обладающее 100% надежностью, но кабели очень надежны, учитывая, в каких сложных условиях они эксплуатируются", - говорит аналитик компании TeleGeography Алан Молдин.

Правообладатель иллюстрации Getty Image caption Ремонт подводного кабеля не менее трудоемкое и дорогостоящее дело, чем его прокладка

Какое-то оборудование для резки кабелей, установленное на подлодке, теоретически можно применить в диверсионных целях, сказал Би-би-си Джереми Хартли, владелец компании ETA, консультирующей подводный кабельный бизнес.

По его словам, чем ближе к берегу подходит такой кабель, тем толще защитная оболочка и глубже залегание. На небольших глубинах кабели уязвимее для подводных лодок и террористов-диверсантов.

На больших глубинах их тоже можно перерезать, но это обойдется дороже, сказал Хартли. Он считает, что опасность для кабелей со стороны военных или террористов относится к угрозам низшего уровня, менее вероятным, чем ущерб от якорей.

По мнению Джайлса, физическое присутствие военных и боевой техники в местах залегания кабелей делает их особенно уязвимыми в случае конфликта.

"Инфраструктура интернета во времена кризисов нуждается в такой же защите, как любые другие стратегические объекты", - отмечает Джайлс.

Ремонт оптоволоконного кабеля – мероприятие столь же трудоемкое и дорогостоящее, как и его прокладка, отмечают специалисты.

Почему нельзя обойтись спутниками?

Оптоволоконные кабели позволяют передавать данные быстрее и дешевле, чем спутники. Те и другие были разработаны в 1960-е годы. Недостатки спутниковой связи заключаются в относительно долгом времени ожидания и потере качества.

Правообладатель иллюстрации Getty Image caption Инфраструктура интернета нуждается в такой же защите, как любые другие стратегические объекты

Передача и прием сигнала с помощью спутника требует больше времени, чем по оптоволоконному кабелю. Уже разработаны кабели, по которым информация передается со скоростью, составляющую 99,7% скорости света.

Единственный континент, лишенный физического оптоволоконного соединения с остальным миром и интернетом, - Антарктида. Антарктические исследовательские станции производят больше данных, чем можно передать через космос.

Стоимость широкополосной передачи данных через спутник значительно выше, чем по оптоволокну, написал специалист по спутниковым коммуникациям Бен Ханнент на сайте вопросов и ответов Quora.

Один спутник обладает такими же возможностями для широкополосной передачи информации, как один оптический канал, используемый ненадлежащим образом.

Сроки службы спутников и оптоволоконных кабелей сопоставимы: спутника - 20 лет, кабелей – 20-25 лет.

Кабель обладает хорошей физической защищенностью. Спутник практически лишен ее.

25 сентября 1956 года был введен в эксплуатацию первый трансатлантический телефонный кабель. Перед вами небольшой FAQ на тему того, почему Интернет и по сей день живет не в небе, а под водой.

Почему телекоммуникационные компании не используют спутники вместо кабелей?

Спутники отлично подходят для некоторых целей: их можно использовать для той местности, где ещё нет оптоволоконных кабелей, плюс они могут транслировать информацию из одной точки в несколько других.

Однако для поразрядной передачи данных нет ничего лучше, чем оптоволокно. Такие кабели могут передавать бо льшие объёмы данных с меньшими затратами.

Сложно точно узнать объёмы международного трафика, проходящего через спутники, но можно точно сказать, что эти объёмы крайне малы. Статистика, опубликованная Федеральной комиссией по связи США, указывает, что на спутники приходится лишь 0,37% всех международных мощностей США.

Хорошо, а что насчёт моего смартфона, он же использует беспроводной обмен данных?

Когда вы используете телефон, то передаёте данные беспроводным методом только до первой вышки связи, которая передаёт данные уже наземным или подводным путём.

Сколько всего подводных кабелей?

В начале 2017 года насчитали около 428 рабочих подводных кабелей по всему миру. Число постоянно меняется, так как подключают новые кабели и списывают старые.

Как они работают?

Современные подводные кабели используют, как мы уже сказали выше, оптоволоконные технологии. Электрический сигнал превращается в свет, излучаемый микролазерами, и передается на высоких скоростях по волокну к приемнику на другом конце, который, в свою очередь, преобразует свет обратно в электрический сигнал.

Они толстые?

Сам кабель с учетом обмотки толщиной примерно с поливальный шланг. А толщина внутренних элементов кабелей, через которые передаётся сигнал, сравнима с человеческим волосом.

Внутренние волокна кабеля покрыты несколькими слоями изоляции и защитного материала. Те участки кабелей, которые пролегают в прибрежной зоне, покрывают дополнительными слоями для повышения прочности.

Подводный кабель в разрезе: 1. полиэтилен; 2. «майларовая» лента; 3. скрученная стальная проволока; 4. алюминиевая водоизолирующая перегородка; 5. поликарбонат; 6. медная или алюминиевая труба; 7. гидрофобный заполнитель; 8. оптические волокна. Спасибо Wikipedia

Кабели действительно лежат прямо на дне океанов?

Да. Ближе к береговой линии их укладывают под грунтом, чтобы избежать повреждений, собственно поэтому их и не видно на пляжах.

Разумеется, кабели должны прокладываться в наиболее безопасных зонах морского дна, где нет разломов, мест рыболовного промысла, участков для сброса якорей кораблями и прочих опасностей для кабеля. Компании, занимающиеся прокладкой подводных кабелей, открыто сообщают о том, где расположены кабели, чтобы уменьшить вероятность их непреднамеренного повреждения.

Их едят акулы?

Повреждения кабелей акулами - один из мифов СМИ. Это стало популярной темой для статей после того, как в прошлом акулы пару раз «напали» на кабель. На сегодняшний день они не являются основной угрозой для кабелей. Тем не менее кабели часто повреждаются, в среднем более 100 раз в год. Вы редко слышите о повреждениях из-за того, что многие компании, работающие в этой сфере, используют подход «безопасность в цифрах»: до тех пор, пока кабель не будет восстановлен, тот поток данных, который он должен был обслуживать, будет распределён между другими кабелями.

Какова общая длина всех кабелей?

По состоянию на 2017 год общая длина всех действующих кабелей составляет около 1,1 миллиона километров.

Некоторые кабели очень короткие: кабель компании CeltixConnect, соединяющий Ирландию и Великобританию, протянут всего на 131 километр. Другие же кабели могут быть невероятно длинными, например, кабель Asia America Gateway, длина которого составляет 20 000 километров.

Карту-то дайте

Почему между одними странами много соединений, а между другими их вообще нет?

Давайте для начала обратимся к цитате Генри Дэвида Торо:

Наши изобретения обычно похожи на привлекательные игрушки, которые отвлекают наше внимание от действительно важных вещей. Мы спешим строить магнитный телеграф от штата Мэн до Техаса, однако, возможно, Мэн и Техас не имеют никаких важных данных, которые нужно было бы передавать через этот телеграф.

Европа, Азия и Латинская Америка постоянно обмениваются большим количеством данных с Северной Америкой. Из-за того, что Австралия и Латинская Америка данными в таких количествах не обмениваются, между ними и нет никаких кабелей. Зато если кабели появятся, мы будем знать, что там происходит что-то интересное 🙂

Кому принадлежат кабели?

Традиционно кабели принадлежали телекоммуникационным агентствам, которые формировали консорциум из тех, кто заинтересован в использовании кабелей. В конце 90-х годов прошлого столетия приток новых компаний создал большое количество частных кабелей, мощности которых продавались их пользователям.

На сегодняшний день существуют и частные, и принадлежащие консорциумам кабели. Самое большое изменение в организации передачи данных через кабели произошло в типе компаний, занимающихся этим.

Поставщики контента, такие как Google, Facebook, Microsoft и Amazon - главные инвесторы в кабельный бизнес. Объём мощности, развёрнутый частными операторами вроде поставщиков контента, превысил за последние годы тот объём мощности, который обеспечивали операторы интернет-магистралей.

Кто использует эти кабели?

Вы, например. Пользователи мощностей подводных кабелей - разные люди и компании, правительства, операторы сотовой связи, транснациональные корпорации и поставщики контента. Любой человек, который вышел в Интернет, уже пользуется подводными кабелями, независимо от устройства.

Какие объёмы информации они могут передавать?

Пропускная способность у всех кабелей разная. Новые кабели могут пропускать больший объём данных, чем те, которые были проложены 15 лет назад. Готовящийся к эксплуатации кабель MAREA сможет передавать данные со скоростью 160 терабит в секунду.

Касательно прокладки компанией Google собственного оптоволоконного кабеля связи по дну Тихого океана, который свяжет дата-центры компании в штате Орегон, США, с Японией. Казалось бы, это огромный проект стоимостью $ 300 млн. и длинной в 10 000 км. Однако, если копнуть немного глубже станет ясно, что данный проект является выдающимся только потому, что это будет делать один медийный гигант для личного использования. Вся планета уже плотно опутана кабелями связи и под водой их намного больше, чем кажется на первый взгляд. Заинтересовавшись этой темой я подготовил общеобразовательный материал для любопытствующих.

Истоки межконтинентальной связи

Практика прокладывания кабеля через океан берет начало еще с XIX века. Как сообщает википедия , первые попытки соединить два континента проводной связью были предприняты еще в 1847 году. Успешно связать Великобританию и США трансатлантическим телеграфным кабелем удалось только к 5 августа 1858 года, однако уже в сентябре связь была утеряна. Предполагается, что причиной стали нарушение гидроизоляции кабеля и последующая его коррозия и обрыв. Стабильная связь между Старым и Новым светом была установлена только в 1866 году. В 1870 году был проложен кабель в Индию, что позволило связать напрямую Лондон и Бомбей. В эти проекты были вовлечены одни из лучших умов и промышленников того времени: Уильям Томсон (будущий великий лорд Кельвин), Чарльз Уитстон, братья Сименсы. Как видно, почти 150 лет назад люди активно занимались созданием по протяженности в тысячи километров линий связи. И на этом прогресс, понятное дело, не остановился. Однако, телефонная связь с Америкой была установлена только в 1956 году, а работы длились почти 10 лет. Подробно об укладке первого трансатлантического телеграфного и телефонного кабеля можно прочитать в книге Артура Кларка «Голос через океан» .

Устройство кабеля

Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:
  • Долговечность
  • Быть водонепроницаемым (внезапно!)
  • Выдерживать огромное давление водных масс над собой
  • Обладать достаточной прочностью для укладки и эксплуатации
  • Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики

Рабочая часть рассматриваемого нами кабеля, по большому случаю, ни чем особым от обычной оптики не отличается. Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации, что видно из схематического рисунка справа. Давайте по порядку разберем назначение всех элементов конструкции.

Полиэтилен - внешний традиционный изоляционный слой кабеля. Данный материал является отличным выбором для прямого контакта с водой, так как обладает следующими свойствами:
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой.

Мировой океан содержит в себе, фактически, все элементы таблицы Менделеева, а вода является универсальным растворителем. Использование такого распространенного в хим. промышленности материала как полиэтилен является логичным и оправданным, так как в первую очередь инженерам было необходимо исключить реакцию кабеля и воды, тем самым избежать его разрушения под воздействием окружающей среды. Полиэтилен использовался в качестве изолирующего материала в ходе прокладки первых межконтинентальных линий телефонной связи в середине XX века.
Однако, в силу своей пористой структуры полиэтилен не может обеспечить полной гидроизоляции кабеля, поэтому мы переходим к следующему слою.

Майларовая пленка - синтетический материал на основе полиэтилентерефталата . Имеет следующие свойства:
Не имеет запаха, вкуса. Прозрачный, химически неактивный, с высокими барьерными свойствами (в том числе и ко многим агрессивным средам), устойчивый к разрыву (в 10 раз прочнее полиэтилена), износу, удару. Майлар (или в СССР Лавсан) широко используется в промышленности, упаковке, текстиле, космической промышленности. Из него даже шьют палатки. Однако, использование данного материала ограничено многослойными пленками из-за усадки при термосваривании.

После слоя майларовой пленки можно встретить армирование кабеля различной мощности, в зависимости от заявленных характеристик изделия и его целевого назначения. В основном используется мощная стальная оплетка для придания кабелю достаточной жесткости и прочности, а так же для противодействия агрессивным механических воздействиям из вне. По некоторым данным, блуждающим в сети, ЭМИ исходящее от кабелей может приманивать акул, которые перегрызают кабели. Так же на больших глубинах кабель просто укладывается на дно, без копания траншеи и его могут зацепить рыболовецкие суда своими снастями. Для защиты от подобных воздействий кабель и армируется стальной оплеткой. Используемая в армировании стальная проволока предварительно оцинковывается. Усиление кабеля может происходить в несколько слоев. Основной задачей производителя в ходе этой операции является равномерность усилия в ходе намотки стальной проволоки. При двойном армировании намотка происходит в разных направлениях. При не соблюдении баланса в ходе данной операции кабель может самопроизвольно скручиваться в спираль, образуя петли.

В результате этих мероприятий масса погонного километра может достигать нескольких тонн. «Почему не легкий и прочный алюминий?» - спросят многие. Вся проблема в том, что на воздухе алюминий имеет стойкую пленку окисла, но при соприкосновении с морской водой данный металл может вступать в интенсивную химическую реакцию с вытеснением ионов водорода, которые оказывают губительное влияние на ту часть кабеля, ради которой все затевалось - оптоволокно. Поэтому используют сталь.

Алюминиевый водный барьер , или слой алюмополиэтилена используется как очередной слой гидроизоляции и экранирования кабеля. Алюмополиэтилен представляет собой комбинацию из фольги алюминиевой и полиэтиленовой пленки, соединенных между собой клеевым слоем. Проклейка может быть как односторонней, так и двухсторонней. В масштабах всей конструкции алюмополиэтилен выглядит почти незаметным. Толщина пленки может варьироваться от производителя к производителю, но, к примеру, у одного из производителей на территории РФ толщина конечного продукта составляет 0.15-0.2 мм при односторонней проклейке.

Слой поликарбоната вновь используется для усиления конструкции. Легкий, прочный и стойкий к давлению и ударам, материал широко используется в повседневных изделиях, например, в велосипедных и мотоциклетных шлемах, также применяется в качестве материала при изготовлении линз, компакт-дисков и светотехнических изделий, листовой вариант используется в строительстве как светопропускающий материал. Обладает высоким коэффициентом теплового расширения . Применение ему было найдено и в производстве кабелей.

Медная, или алюминиевая трубка входит в состав сердечника кабеля и служит для его экранирования. Непосредственно в эту конструкцию укладываются другие медные трубки с оптоволокном внутри. В зависимости от конструкции кабеля, трубок может быть несколько и они могут быть переплетены между собой различным образом. Ниже четыре примера организации сердечника кабеля:

Укладка оптоволокна в медные трубки которые заполнены гидрофобным тиксотропным гелем, а металлические элементы конструкции используются для организации дистанционного электропитания промежуточных регенераторов - устройств, осуществляющих восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения.

В разрезе получается что-то похожее на это:

Производство кабеля

Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.

Укладка кабеля

Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля - это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным, так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. В случае прокладки кабеля между разными странами, необходимо получить разрешение на использование прибрежных вод той или иной страны, необходимо получить все необходимые разрешения и лицензии на проведение кабелеукладочных работ. После проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.

Собственно, из гифки процесс укладки становится предельно ясным.

Прокладка оптоволоконного кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:

Если Вам кажется, что она маловата, то обратите внимание на это фото:

После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.

Выглядит со стороны это так:

При каких-либо проблемах, обрывах, или повреждениях на кабеле предусмотрены специальные якоря, которые позволяют поднять его к поверхности и отремонтировать проблемный участок линии.

И, в итоге, благодаря всему этому мы можем с комфортом и на высокой скорости смотреть в интернете фото и видео с котиками со всего мира.

В комментариях к статье о проекте Google пользователь

Это выглядит сценарием ночного кошмара: террористическая организация или агрессивное государство решает уничтожить глобальный интернет, перерезав подводные волоконно‐оптические кабели, которые соединяют весь мир в единую сеть. Линии, которые проходят по дну океана, отвечают за всю цифровую связь, позволяя нам отправлять сообщение в Facebook другу в Дубае или получать электронное письмо от дальнего родственника в Австралии.

Следующая новость

Должностные лица ВМФ США неоднократно предупреждали о катастрофических последствиях действий России, подводные лодки и корабли которой часто подозревают в наблюдениях за морскими кабелями связи. По мнению американских военных, результат будет «мгновенным и критическим». НАТО даже планирует возродить командный пункт времен «Холодной войны», чтобы хотя бы частично контролировать российскую деятельность в Северной Атлантике.

Насколько велика реальная угроза, попыталось разобраться издание Wired .

По мнению экспертов, перспектива потери глобального интернета из-за повреждения кабелей пугает. Но если бы Россия или кто-то еще смогли их обрезать, последствия, вероятно, были бы менее серьезными, чем картина, которую рисуют военные США. Инфраструктура Сети уязвима, но Россия не представляет для нее наибольшую угрозу. Есть много более сложных проблем, которые начинаются с понимания того, как работает кабельная система.

Размеры беспокойства о том, что кто-то обрежет один или несколько кабелей, искусственно раздуваются. Если бы кто-то знал, как работают эти системы, и если бы он правильно спланировал атаку, то мог бы разрушить всю систему. Но вероятность того, что это произойдет, очень мала. Большинство опасений напрасны

— профессор Нью-Йоркского университета Николь Старосельски

Эксперт, который шесть лет изучал устройство системы интернет-кабелей пояснил, что разрывы не так уж редко происходят. Каждые пару дней один из 428 подводных кабелей повреждается. Почти все ошибки не являются преднамеренными. Они вызваны подводными землетрясениями, подъемами дна, якорями кораблей. Это не означает, что люди неспособны целенаправленно испортить связь. Так, у побережья Вьетнама в 2007 году рыбаки вырезали 27 миль волоконных кабелей, нарушив связь на нескольких месяцев. Но страна не была полностью отрезана от мира, поскольку существовал еще один кабель, поддерживавший интернет.

Обычно вы даже не замечаете, когда кабель неисправен, особенно если живете где-то вроде Соединенных Штатов, потому что ваше сообщение в Instagram или звонок в Google Voice мгновенно перенаправляются. Если вы, например, общаетесь по Skype с другом в Румынии, а рыбацкая лодка или якорь разрывает кабель, ваш разговор просто переходит на другую линию. Многие регионы, такие как Европа, США и Восточная Азия, имеют множество кабелей, идущих по схожему пути. Пути их можно проследить на карте .

Это означает, что Россия, обрезав несколько кабелей в Атлантике, где были обнаружены ее подводные лодки, не очень помешала бы глобальному интернету. Фактически, даже если был бы разорван каждый отдельный кабель в Атлантическом океане, трафик все равно мог быть перенаправлен через Тихий океан.

Это технически невозможно или будет фантастическим результатом, но, скорее всего, не нарушит связь полностью

— директор по исследованиям фирмы TeleGeography, специализирующейся на телекоммуникациях, Алан Мольдин

Даже при гипотетическом сценарии, при котором Россия каким-то образом обрежет каждый кабель, который связывает США со всем миром, интернет не выключится, как электричество. Американцы все равно смогут использовать наземные сети на континенте. Но общение с другими странами прекратится.

Вы все равно сможете отправлять по электронной почте письма внутри США, даже если все подводные кабели исчезли. Но жители Европы не увидят ваше глупое видео кота, которое вы разместили в Facebook

— Мольдин

Поскольку обрывы происходят довольно часто, ремонтные корабли патрулируют почти все мировые океаны. Даже если Россия действительно начала резать кабели, есть суда, предназначенные для их быстрого ремонта. Кроме того, гипотетическая кабельная атака российских субмарин нанесла бы вред своим же гражданам, как заметил другой аналитик Telegeography.

Это могло бы повредить россиянам, возможно, даже больше, чем американцам. Они гораздо более зависимы от международных сетей, чем мы, потому что большая часть нашего контента хранится в стране

— старший аналитик Джонатан Хембо

Это не означает, что подводные кабели не подвержены риску или что им не нужна защита, особенно в районах мира со слабой инфраструктурой интернета, например, в Африке и некоторых частях Юго-Восточной Азии. Когда происходит обрыв, последствия могут быть более серьезными, в том числе полное нарушение Сети.

Повреждение кабеля может быть действительно серьезной проблемой и может повредить возможности подключения в некоторых частях мира, где имеется ограниченный доступ к кабелям

— Мольдин

Например, в 2011 году пожилая женщина перерезала подземный кабель, похищая медную проволоку, и случайно отключила доступ в интернет для всей Армении. Страна провела пять часов в автономном режиме. Последствия были столь серьезными, что пришлось предоставить почти весь доступ этой страны к интернету через Грузию.

Такой одиночный кабель можно рассматривать как место, где интернет-инфраструктура подвергается наибольшему риску. Например, в некоторых районах океанские кабели проходят через узкие участки, которые граничат с несколькими странами. Это такие места как Малаккский пролив и Красное море. В этих районах существует большой риск от таких угроз как корабельные якоря. Они также потенциально подвержены геополитическим спорам, поскольку большее число стран и компаний проявляют интерес к линиям, проходящие через эти воды.

Еще несколько районов также являются местами большого скопления проводов и, следовательно, объектами повышенного риска. Если бы подводные кабели Египта, например, были повреждены, по меньшей мере треть глобального интернета могла бы отключиться. Город Форталеза на севере Бразилии, является подводным кабельным портом, соединяющим Северную и Южную Америку. Если бы связь была нарушена в этом узле, все данные, которые поступают из Бразилии в Соединенные Штаты, будут потеряны.

Иногда глобальному интернету угрожают не якоря и другие беды, а политики. Например, в 2011 году Индонезия требовала, чтобы только суда с индонезийской командой исправляли разрывы в своих водах. Проблема заключалась в том, что таких судов не существовало, что вызывало задержки с проблемами не только для страны, но и для других регионов, которые получали данные через нее.

Единственное, о чем нам не нужно беспокоиться, это акулы. Несмотря на многочисленные сообщения в средствах массовой информации, они и другие рыбы не представляют опасности для подводных кабелей.

До сих пор не произошло не одного случая повреждения кабеля, связанного с акулами и прочими рыбами

— Мольдин

Не было пока и разрывов, связанных с российской агрессией. Похоже, что Путин оставил в покое подводные кабели, по крайней мере, на данный момент. В то же время мы можем работать над защитой от более реальных угроз для интернет-инфраструктуры, отмечает издание.

Недавно военные США и стран НАТО серьезно озаботились маневрами российского гидрографического судна «Янтарь» у побережья Аргентины. Корабль, по их мнению, представляет .

Следующая новость