Биотехнологии. Что такое биотехнология? История и достижения биотехнологии

Биотехнология, ее объекты и основные направления. Биотехнология - это производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов, культивируемых клеток и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности, а именно - в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна, кож и т.д., т.е. в процессах, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились.

Объектами биотехнологии служат вирусы, бактерии, протисты, дрожжи, а также растения, животные или изолированные клетки и субклеточные структуры (органеллы).

Основными направлениями биотехнологии являются: 1) производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферментов, витаминов, гормонов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также ценных соединений (кормовых добавок, например незаменимых аминокислот, кормовых белков; 2) использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы) и защита растений от вредителей и болезней; 3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.п.

Задачи, методы и достижения биотехнологии. Главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной (генетической) и клеточной инженерии.

Генная инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных реплицироваться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов. Генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

    выделение генов (отдельных фрагментов ДНК) из клеток бактерий, растений или животных. В отдельных случаях эту операцию заменяют искусственным син тезом нужных генов;

    соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

    введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

    копирование (клонирование) этого гена в новом хозяине с обеспечением его работы (рис. 8.11).

Клонированный ген путем микроинъекции вводят в яйцеклетку млекопитающего или протопласт растения (изолированная клетка, лишенная клеточной стенки) и выращивают из них целое животное или растение. Растения и животные, геном которых изменен путем генно-инженерных операций, получили названиетрансгенных растений и трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека - сахарного диабета, некоторых видов злокачественных опухолей и карликовости соответственно.

Клеточная инженерия - метод, позволяющий конструировать клетки нового типа. Метод заключается в культивировании изолированных клеток и тканей на искусственной питательной среде в регулируемых условиях, что стало возможным благодаря способности растительных клеток в результате регенерации формировать целое растение из единичной клетки. Условия регенерации разработаны для многих культурных растений, таких как картофель, пшеница, ячмень, кукуруза, томат и др. Работа с этими объектами делает возможным использование в селекции нетрадиционных методов клеточной инженерии, таких как соматическая гибридизация, гаплоидия, клеточная селекция, преодоление нескрещиваемости в культуре и др.

Соматическая гибридизация - это слияние двух различных клеток в культуре тканей. Сливаться могут разные виды клеток одного организма и клетки разных, иногда очень далеких видов, например, мыши и крысы, кошки и собаки, человека и мыши.

Культивирование клеток растений стало возможным, когда научились с помощью ферментов избавляться от толстой клеточной стенки и получать изолированный протопласт. Протопласты можно культивировать так же, как и клетки животных, обеспечивать слияние их с протопластами других видов растений и получать в соответствующих условиях новые гибридные растения.

Важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека. У сельскохозяйственных животных с помощью инъекции гормонов удается получить от одной коровы-рекордистки десятки яйцеклеток, оплодотворить их в пробирке спермой породистого быка, а затем имплантировать в матку других коров и таким путем получить от одного ценного экземпляра в 10 раз большее потомства, чем это было бы возможно обычным путем.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персика и др. Так, при обычном разведении куст малины может дать не более 50 отростков в год, в то время как с помощью культуры клеток можно получить более 50 тыс. растений. При таком разведении иногда возникают растения более продуктивные, чем исходный сорт.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. Внедрение нужных генов в клетки растений, животных и человека позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Биотехнология - это производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов. Основными направлениями биотехнологии являются: производство биологически активных соединений (витаминов, гормонов, ферментов), лекарственных препаратов и других ценных соединений, разработка и использование биологических методов борьбы с загрязнением окружающей среды, создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т.д. Решению этих сложных задач способствуют методы генной и клеточной инженерии.

Оглавление темы "Биотехнология. Генная инженерия. Генная терапия.":
1. Биотехнология. Наука биотехнология. Этапы развития биотехнологии.
2. Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.
3. Промышленное применение микроорганизмов. Производство продуктов микробного синтеза. Производство антибиотиков. Производство вакцин.
4. Генная инженерия. Биобезопасность. Актуальность генной инженерии. Теоретическая база генной инженерии.
5. Организация генетического материала в клетке. Генотип. Что такое генная инженерия? Этапы получения генной продукции.
6. Применение методов генной инженерии. Показания (оправданность) применения генной инженерии. Причины применения генной инженерии.
7. Биобезопасность в генной инженерии. Документы регламентирующие биобезопасность.
8. Группы опасности микроорганизмов. Оценка риска применения генетически модифицированных микроорганизмов.
9. Генная диагностика. Генная терапия. Что такое генная диагностика и генная терапия? Виды генной терапии.
10. Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.
11. Перспективы генной терапии. Будущее генной терапии. Задачи генной терапии.

Области применения биотехнологии. Области использования биотехнологии. Оптимизация микробиологических процессов в биотехнологии.

Новые методы получения промышленно важных продуктов - прежде всего методы биотехнологии , и в особенности, промышленной микробиологии. Промышленная микробиология основывается на применении микроорганизмов в промышленности для получения коммерчески, ценных продуктов и лекарств. Важнейшие продукты микробного синтеза - специальные вещества, используемые для фармацевтических и пищевых целей (антибиотики, ферменты, ингибиторы ферментов, витамины, ароматизаторы, добавки для пищевой промышленности и др.).; Гибкость метаболизма и высокая способность микробов к адаптации, простота культивирования, изученность генетики, разработанные методы направленного создания штаммов с заданными свойствами - преимущества, делающие микробную биотехнологию одним из перспективных направлений промышленности. Целесообразность промышленного производства определяется такими факторами, как высокий выход продукта (образование больших количеств из исходного материала), низкая стоимость производства и доступность сырья.

Области применения биотехнологии представлены в табл. 7-1. В настоящее время разработаны способы получения более 1000 наименований продуктов биотехнологическими способами. В США совокупная стоимость этих продуктов в 2000 г. оценивается в десятки миллиардов долларов. Все отрасли, в которых может быть использована биотехнология, перечислить практически невозможно.

Таблица 7-1. Области использования биотехнологии
Область применения Примеры
Медицина, здравоохранение, фармакология Антибиотики, ферменты, аминокислоты, кровезаменители, алкалоиды, нуклеотиды, иммунорегуляторы, противораковые и противовирусные препараты, новые вакцины, гормональные препараты (инсулин, гормон роста и др.), монокпональные AT для диагностики и лечения, пробы ДНК для диагностики и генотерапии, продукты диетического питания
Получение химических веществ Этилен, пропилен, бутилен, окисленные углеводороды, органические кислоты, терпены, фенолы, акрилаты, полимеры, ферменты, продукты тонкого органического синтеза, полисахариды
Животноводство Усовершенствование кормовых рационов (производство белка, аминокислот, витаминов, кормовых антибиотиков, ферментов, заквасок для силосования), ветеринарных препаратов (антибиотики, вакцины и т.д.), гормонов роста, создание высокопродуктивных пород, пересадка оплодотворённых клеток, эмбрионов, манипуляции с чужеродными генами
Растениеводство Биорациональные пестициды, бактериальные удобрения, гибберели-ны, производство безвирусного посадочного материала, создание высокопродуктивных гибридов, введение генов устойчивости к болезням, засухе, заморозкам, засоленности почв
Рыбное хозяйство Кормовой белок, ферменты, антибиотики, создание генетически модифицированных пород с усиленным ростом, устойчивых к заболеваниям
Пищевая промышленность Белок, аминокислоты, заменители сахара (аспартам, глюкозофруктовый сироп), полисахариды, органические кислоты, нуклеотиды, липиды, переработка пищевых продуктов
Энергетика и добыча полезных ископаемых Спирты, биогаз, жирные кислоты, алифатические углеводороды, водород, уран, интенсификация добычи нефти, газа, угля, искусственный фотосинтез, биометаллургия, добыча серы
Тяжёлая промышленность Улучшение технических характеристик каучука, бетонных, цементных, гипсовых растворов, моторных топлив; антикоррозийные присадки, смазки для проката чёрных и цветных металлов, технический белок и липиды
Лёгкая промышленность Улучшение технологии переработки кож, производства текстильного сырья, шерсти, бумаги, парфюмерно-косметических изделий, получение биополимеров, искусственных кожи и шерсти и т.д.
Биоэлектроника Биосенсоры, биочипы
Космонавтика Создание замкнутых систем жизнеобеспечения в космосе
Экология Утилизация сельскохозяйственных, промышленных и бытовых отходов, биодеградация трудноразлагаемых и токсических веществ (пестицидов, гербицидов, нефти), создание замкнутых технологических циклов, производство безвредных пестицидов, легкоразрушаемых полимеров
Научные исследования Генно-инженерные и молекулярно-биологические исследования (ферменты рестрикции ДНК, ДНК- и РНК-полимеразы, ДНК- и РНК-лигазы, нуклеиновые кислоты, нуклеотиды и т.д.), медицинские исследования (средства диагностики, реактивы и пр.), химия (реактивы, сенсоры)

Оптимизация микробиологических процессов в биотехнологии . Принципиальные подходы к оптимизации микробных биотехнологических процессов: управляемое культивирование (изменение состава питательной среды, целевые добавки, регуляция скорости перемешивания, аэрации, модификация температурного режима и пр.); генетические манипуляции, которые подразделяют на традиционные методы (селекция штаммов) и методы генной инженерии (технология рекомбинантных ДНК).

В настоящее время микробиологическим путём получают микробную биомассу , первичные и вторичные продукты метаболизма. Первичные продукты (продукты первой фазы) - метаболиты, синтез которых необходим для выживания данного микроорганизма. Синтез вторичных продуктов (продукты второй фазы) не относится к жизненно необходимым для микроорганизма-продуцента. Оптимальные условия для получения биомассы определяются высокими скоростями протока среды через культуры микроорганизмов и стабильными химическими условиями культивирования (в том числе рН, количество кислорода и углерода). Процесс получения продуктов первой фазы (в частности, ферментов) оптимизируют в целях увеличения удельной активности фермента (единиц/г*ч -1) и объёмной продуктивности (единиц /л*ч -1).

Для получения продуктов второй фазы (например, антибиотиков) главная задача - максимальное увеличение их концентрации, что ведёт к снижению затрат на их выделение.

История взаимоотношений человека и природы — это извечная история попыток человека изменить геном растений и животных в нужную ему сторону. Даже тогда, когда человек не имел ни малейшего понятия о существовании наследственных факторов, интуитивно путём гибридизации и селекции организмов с нужными свойства-ми он изменял наследственность домашних животных и культурных растений.

Все сорта фруктовых деревьев и ягодных культур, овощей, злаков имеют изменённый геном, то есть у них уже не тот генотип, кото-рый имели их дикие предки. Практически все растения, которые люди используют в пищу — полиплоиды. Уже несколько столетий люди используют в хозяйстве межвидовые гибриды, например мулов.

До начала XX ст. селекционерам просто приходилось ждать момента, когда случайная комбинация генов даст организмы с полезными свойствами, отбирать такие организмы и закреп-лять эти комбинации генов в потомстве. В середине XX ст. появились методы, благодаря которым стало возможно искус-ственно получать большое количество случайных мутаций, например с помощью радиоактивного облучения или действия химических мутагенов, чтобы затем отбирать среди них организмы с ценными свойствами. Современные генетические технологии пошли ещё дальше. Они позволяют добиться желаемого результата гораздо быстрее и при этом избежать получения множества промежуточных и побочных лишних форм, так как современная наука и биотехнология способны менять геном целенаправленно. Это удаётся благодаря генно-инженерным методам (рис. 78), с помощью которых можно взять определённые структурные гены из генома одного вида и ввести их в генетический аппарат другого вида, вызвав таким образом в новом организме синтез нужного белка.

Биотехнология — дисциплина, которая изучает возмож-ности использования живых организмов для решения техно-логических задач. Она использует методы и знания генетики, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплин — химической, физической и информационной технологий, робототехники.

Термин биотехнология в 1917 г. предложил венгерский инженер К. Ереки, когда описал процесс производства свини-ны, используя в качестве корма для свиней сахарную свёклу.

Биотехнология — это методология использования биологических объектов для решения технологических задач. Материал с сайта

Современная биотехно-логия позволяет вмешиваться в генетический аппарат и конструиро-вать новые комбинации генов. Так получают генно-модифицированные и трансгенные организмы.

Генетические модификации создают для того, чтобы прибавить организмам полезных свойств.

Трансгенные организмы используют в фармакологии, сельском хозяйстве, промышленности.

Одним из методов генной инженерии является генная терапия , которая позволяет лечить патологии генетического аппарата путём подсадки более здоровых генов.

Биологические технологии (биотехнологии) обеспечивают управляемое получение полезных продуктов для различных сфер человеческой деятельности, базируясь на использовании каталитического потенциала биологических агентов и систем различной степени организации и сложности - микроорганизмов, вирусов, растительных и животных клеток и тканей, а также внеклеточных веществ и компонентов клеток.

Развитие и преобразование биотехнологии обусловлено глубокими переменами, происшедшими в биологии в течение последних 25-30 лет. Основу этих событий составили новые представления в области молекулярной биологии и молекулярной генетики. В то же время нельзя не отметить, что развитие и достижения биотехнологии теснейшим образом связаны с комплексом знаний не только наук биологического профиля, но также и многих других.

Расширение практической сферы биотехнологии обусловлено также социально-экономическими потребностями общества. Такие актуальные проблемы, стоящие перед человечеством на пороге ХХ1 в., как дефицит чистой воды и пищевых веществ (особенно белковых), загрязнение окружающей среды, недостаток сырьевых и энергетических ресурсов, необходимость получения новых, экологически чистых материалов, развития новых средств диагностики и лечения, не могут быть решены традиционными методами. Поэтому для жизнеобеспечения человека, повышения качества жизни и ее продолжительности становится все более необходимым освоение принципиально новых методов и технологий.

Развитие научно-технического прогресса, сопровождающееся повышением темпов материальных и энергетических ресурсов, к сожалению, приводит к нарушению баланса в биосферных процессах. Загрязняются водные и воздушные бассейны городов, сокращается воспроизводительная функция биосферы, вследствие накопления тупиковых продуктов техносферы нарушаются глобальные круговоротные циклы биосферы.

Стремительность темпов современного научно-технического прогресса человечества образно описал швейцарский инженер и философ Эйхельберг: «Полагают, что возраст человечества равен 600 000 лет. Представим себе движение человечества в виде марафонского бега на 60 км, который где-то начинаясь, идет по направлению к центру одного из наших городов, как к финишу... Большая часть дистанции пролегает по весьма трудному пути -через девственные леса, и мы об этом ничего не знаем, ибо только в самом конце, на 58-59 км бега, мы находим, наряду с первобытным орудием, пещерные рисунки, как первые признаки культуры, и только на последнем километре появляются признаки земледелия.

За 200 м до финиша дорога, покрытая каменными плитами, ведет мимо римских укреплений. За 100 м бегунов обступают средневековые городские строения. До финиша остается 50 м, где стоит человек, умными и понимающими глазами следящий за бегунами, -это Леонардо да Винчи. Осталось 10 м. Они начинаются при свете факелов и скудном освещении масляных ламп. Но при броске на последних 5 м происходит ошеломляющее чудо: свет заливает ночную дорогу, повозки без тяглового скота мчатся мимо, машины шумят в воздухе, и пораженный бегун ослеплен светом прожекторов фото- и телекамер...», т.е. за 1 м человеческий гений совершает ошеломляющий рывок в области научно-технического прогресса. Продолжая этот образ, можно добавить, что в момент приближения бегуна к финишной ленточке оказывается прирученным термоядерный синтез, стартуют космические корабли, расшифрован генетически код.

Биотехнология - основа научно-технического прогресса и повышения качества жизни человека

Биотехнология как область знаний и динамически развиваемая промышленная отрасль призвана решить многие ключевые проблемы современности, обеспечивая при этом сохранение баланса в системе взаимоотношений «человек - природа - общество», ибо биологические технологии (биотехнологии), базирующиеся на использовании потенциала живого по определению нацелены на дружественность и гармонию человека с окружающим его миром. В настоящее время биотехнология подразделяется на несколько наиболее значимых сегментов: это «белая», «зеленая», «красная», «серая» и «синяя» биотехнология.

К «белой» биотехнологии относят промышленную биотехнологию, ориентированную на производство продуктов, ранее производимых химической промышленностью, - спирта, витаминов, аминокислот и др. (с учетом требований сохранения ресурсов и охраны окружающей среды).

Зеленая биотехнология охватывает область, значимую для сельского хозяйства. Это исследования и технологии, направленные на создание биотехнологических методов и препаратов для борьбы с вредителями и возбудителями болезней культурных растений и домашних животных, создание биоудобрений, повышение продуктивности растений, в том числе с использованием методов генетической инженерии.

Красная (медицинская) биотехнология - наиболее значимая область современной биотехнологии. Это производство биотехнологическими методами диагностикумов и лекарственных препаратов с использованием технологий клеточной и генетической инженерии (зеленые вакцины, генные диагностикумы, моноклональные антитела, конструкции и продукты тканевой инженерии и др.).

Серая биотехнология занимается разработкой технологий и препаратов для защиты окружающей среды; это рекультивация почв, очистка стоков и газовоздушных выбросов, утилизация промышленных отходов и деградация токсикантов с использованием биологических агентов и биологических процессов.

Синяя биотехнология в основном ориентирована на эффективное использование ресурсов Мирового океана. Прежде всего, это использование морской биоты для получения пищевых, технических, биологически активных и лекарственных веществ.

Современная биотехнология - это одно из приоритетных направлений национальной экономики всех развитых стран. Путь повышения конкурентности биотехнологических продуктов на рынках сбыта является одним из основных в общей стратегии развития биотехнологии промышленно развитых стран. Стимулирующим фактором выступают специально принимаемые правительственные программы по ускоренному развитию новых направлений биотехнологии.

Госпрограммы предусматривают выдачу инвесторам безвозмездных ссуд, долгосрочных кредитов, освобождение от уплаты налогов. В связи с тем что проведение фундаментальных и ориентированных работ становится все более дорогостоящим, многие страны стремятся вывести значительную часть исследований за пределы национальных границ.

Как известно, вероятность успеха осуществления проектов НИОКР в целом не превышает 12-20 %, около 60 % проектов достигают стадии технического завершения, 30 % - коммерческого освоения и только 12 % оказываются прибыльными.

Особенности развития исследований и коммерциализации биологических технологий в США, Японии, странах ЕС и России

США. Лидирующее положение в биотехнологии по промышленному производству биотехнологических продуктов, объемам продаж, внешнеторговому обороту, ассигнованиям и масштабам НИОКР занимают США, где уделяется огромное внимание развитию данного направления. В этом секторе к 2003 г. было занято свыше 198 300 чел.

Ассигнования в этот сектор науки и экономики в США значительны и составляют свыше 20 млрд дол. США ежегодно. Доходы биотехнологической индустрии США выросли с 8 млрд дол. в 1992 г. до 39 млрд дол. в 2003 г.

Эта отрасль находится под пристальным вниманием государства. Так, в период становления новейшей биотехнологии и возникновения ее направлений, связанных с манипулированием генетическим материалом, в середине 70-х гг. прошлого столетия конгресс США уделял большое внимание вопросам безопасности генетических исследований. Только в 1977 г. состоялось 25 специальных слушаний и было принято 16 законопроектов.

В начале 90-х гг. акцент сместился на разработку мер по поощрению практического использования биотехнологии для производства новых продуктов. С развитием биотехнологии в США связывают решение многих ключевых проблем: энергетической, сырьевой, продовольственной и экологической.

Среди биотехнологических направлений, близких к практической реализации или находящихся на стадии промышленного освоения, следующие:
- биоконверсия солнечной энергии;
- применение микроорганизмов для повышения выхода нефти и выщелачивания цветных и редких металлов;
- конструирование штаммов, способных заменить дорогостоящие неорганические катализаторы и изменить условия синтеза для получения принципиально новых соединений;
- применение бактериальных стимуляторов роста растений, изменение генотипа злаковых и их приспособление к созреванию в экстремальных условиях (без вспашки, полива и удобрений);
- направленный биосинтез эффективного получения целевых продуктов (аминокислот, ферментов, витаминов, антибиотиков, пищевых добавок, фармакологических препаратов;
- получение новых диагностических и лечебных препаратов на основе методов клеточной и генетической инженерии.

Роль лидера США обусловлена высокими ассигнованиями государства и частного капитала на фундаментальные и прикладные исследования. В финансировании биотехнологии ключевую роль играют Национальный научный фонд (ННФ), министерства здравоохранения и социального обеспечения, сельского хозяйства, энергетики, химической и пищевой промышленности, обороны, Национальное управление по аэронавтике и исследованию космического пространства (НАСА), внутренних дел. Ассигнования выделяются по программно-целевому принципу, т.е. субсидируются и заключаются контракты на исследовательские проекты.

При этом крупные промышленные компании устанавливают деловые отношения с университетами и научными центрами. Это способствует формированию комплексов в той или иной сфере, начиная от фундаментальных исследований до серийного выпуска продукта и поставки на рынок. Такая «система участия» предусматривает формирование специализированных фондов с соответствующими экспертными советами и привлечение наиболее квалифицированных кадров.

При выборе проектов с высокой коммерческой результативностью стало выгодным использовать так называемый «анализ с учетом заданных ограничений». Это позволяет существенно сократить сроки реализации проекта (в среднем с 7-10 до 2-4 лет) и повысить вероятность успеха до 80 %. Понятие «заданные ограничения» включают потенциальную возможность успешной продажи продукта и получения прибыли, увеличения годового производства, конкурентоспособность продукта, потенциальный риск с позиций сбыта, возможности перестройки производства с учетом новых достижений и т.д.

Ежегодные общие государственные расходы США на генно-инженерные и биотехнологические исследования составляют миллиарды долларов. Инвестиции частных компаний существенно превосходят эти показатели. Только на создание диагностических и противоопухолевых препаратов ежегодно выделяется несколько миллиардов долларов. В основном это следующие направления: методы рекомбинации ДНК, получение гибридов, получение и применение моноклональных антител, культуры тканей и клеток.

В США стало обычным, когда компании, не связанные ранее с биотехнологией, начинают приобретать пакеты акций действующих компаний и строить собственные биотехнологические предприятия (табл. 1.1). Это, например, практика таких химических гигантов, как Philips Petrolium, Monsanto, Dow Chemical. Около 250 химических компаний имеют в настоящее время интересы в области биотехнологии. Так, у гиганта химической индустрии США - компании De Pont есть несколько биотехнологических комплексов стоимостью 85-150 тыс. дол. со штатом 700-1 000 чел.

Подобные комплексы созданы в структуре Monsanto, более того, в настоящее время до 75 % бюджета (свыше 750 млн дол.) направляется в сферу биотехнологии. В сфере внимания этих компаний - производство генно-инженерного гормона роста, а также ряда генно-инженерных препаратов для ветеринарии и фармакологии. Кроме этого, фирмы совместно с университетскими исследовательскими центрами подписывают контракты на проведение совместных НИОКР.

Таблица 1.1. Крупнейшие концерны и фармацевтические фирмы США, производящие медицинские биотехнологические препараты


Существует мнение, что все необходимые условия для становления и развития биотехнологии в США подготовил венчурный бизнес. Для крупных фирм и компаний венчурный бизнес является хорошо отработанным приемом, позволяющим за более короткий срок получить новые разработки, привлекая для этого мелкие фирмы и небольшие коллективы, нежели заниматься этим собственными силами.

Например, в 80-е гг. General Electric с помощью мелких фирм стал осваивать производство биологически активных соединений, только в 1981 г. его рисковые ассигнования в биотехнологии составили 3 млн дол. Риск с участием мелких фирм обеспечивает крупным компаниям и корпорациям механизм отбора экономически оправданных нововведений с большими коммерческими перспективами.

Н.А. Воинов, Т.Г. Волова

Как известно, самые интересные открытия совершаются на стыке областей знания.

Одним из наиболее перспективных направлений в естественнонаучных дисциплинах сегодня стала биотехнология, возможности которой пока что изучены довольно слабо. Этот важный раздел биологической науки вполне может стать основой для технологического рывка в ближайшем будущем, сыграв для XXI века ту же роль, какую для ХХ столетия сыграли химия и электроника.

Биотехнология – значение слова

В последние десятилетия слово «биотехнология» всё чаще встречается на страницах СМИ, в телепередачах и в интернете. Впервые о биотехнологиях заговорили в середине 70-х годов ХХ столетия в связи с новыми методиками изготовления лекарственных субстанций – сырья для препаратов, выпускаемых фармакологической промышленностью. С тех пор биотехнологии существенно расширили сферу применения.

Сегодня, говоря о биотехнологии, мы подразумеваем методы производства нужных нам материалов и продуктов с использованием живых организмов, культивируемых в искусственной среде клеток и разнообразных биологических процессов. На текущий момент объектами биотехнологии чаще всего становятся микроорганизмы, а также отдельно взятые клетки животных или растений.

Простейшим примером биотехнологии является изготовление кисломолочных продуктов – кефира, творога и др. – при помощи культур кисломолочных бактерий. Можно вспомнить и о выпекании дрожжевого хлеба с использованием пекарских дрожжей. Эти биотехнологии известны человечеству на протяжении многих веков, но сегодня биологи используют намного более сложные методики, чтобы организовывать необходимые нам процессы.

Для чего нужна биотехнология?

В любой отрасли промышленности добиться нужного результата можно разными способами, но часто биотехнологическое решение поставленной перед учёными задачи оказывается наиболее эффективным, экономичным и безопасным. К примеру, для того, чтобы высечь на мраморе надпись, квалифицированный каменотёс должен трудиться несколько недель.

Однако в Древней Греции для изготовления надписей использовали один из видов улиток, слизь которых обладает повышенной кислотностью. Как известно, мрамор – это кристаллизовавшийся известняк. Проползая по поверхности камня, улитка своей слизью выжигала в нём выемку, и мастеру оставалось лишь направить моллюска в нужную сторону, чтобы быстро и без труда получить желаемую надпись.

Этот пример простейшей биотехнологии прекрасно иллюстрирует все преимущества биологических методов. Биохимические процессы не требуют высокой температуры и давления, не загрязняют окружающую среду и зачастую обходятся намного дешевле традиционных способов. Так, биотехнология сегодня активно используется для обогащения различных руд и добычи редких металлов. Функцию обогатителя выполняют микроорганизмы, которые поглощают нужный металл и накапливают его в своей ткани, а затем отмирают, образуя плотный осадок, из которого уже не составляет труда извлечь необходимый элемент.


Биотехнология позволяет перерабатывать даже очень бедные руды, извлекая из них нужные металлы с высокой точностью и без лишних затрат.

Эти же процессы используются и для эффективной очистки стоков. Если использовать фильтрацию, то очистные сооружения обойдутся очень дорого. Штаммы специально выведенных бактерий извлекают тяжёлые металлы, перерабатывают и делают безопасными нефтепродукты. Очистка стоков не требует затрат: достаточно залить сточные воды в отстойник и запустить туда нужные виды микроорганизмов, а затем подождать, пока вода не осветлится.

Но наиболее часто биотехнология используется для изготовления различных лекарственных препаратов. С её помощью производятся сотни или даже тысячи наименований и групп лекарств: антибиотики, сыворотки, различные вакцины и т.д. Отдельной группой препаратов являются кормовые добавки – аминокислоты, белки и др.

Сферы применения биотехнологии

На текущий момент наиболее активно биотехнологии работают в следующих направлениях:

— производство пищевых продуктов на качественно новой основе;

— разработка и изготовление препаратов, повышающих эффективность сельского хозяйства;

— разработка и изготовление лекарств, вакцин, биодобавок;

— биотехнологии для добывающей промышленности и бытовой сферы;

— изготовление диагностических препаратов и реактивов;

— биотехнология очистки окружающей среды от антропогенных загрязнений.

Существует ещё немало направлений, в которых использование биотехнологии возможно в ближайшей либо отдалённой перспективе.

Направления биотехнологии

Используя живые организмы в своих целях, человек уже сегодня может добывать необходимые вещества, перерабатывать отходы в полезные удобрения, лечить различные болезни и многое другое. Наиболее активно в настоящее время развиваются следующие направления биотехнологии.

Микробиологический синтез – производство необходимых веществ и субстанций с использованием микроорганизмов. Уже сегодня этот способ используется при производстве спирта, иммобилизованных ферментов и ряда других веществ.

Генная инженерия – своеобразное «конструирование» генома живого существа с целью получения организма с заданными свойствами. Методы генной инженерии в последние десятилетия произвели буквально революцию в сельском хозяйстве, создав новые, чрезвычайно устойчивые к неблагоприятным внешним явлениям культурные растения.

Космическая биотехнология – направление, находящееся сегодня в стадии начального развития. Ведутся исследования по применению биотехнологии в космосе, исследуются перспективы получения кристаллических белков и других материалов.

Биогидрометаллургия – извлечение металла из руды при помощи микроорганизмов. В результате деятельности бактерий образуются растворимые соли металла, которые переходят в раствор, а затем извлекаются и перерабатываются обычным способом.


В недалёком будущем биотехнологические процессы смогут заменить многие грязные производства, сделав окружающий нас мир более привлекательным, безопасным и удобным для жизни.