Самый надежный смесительный узел для теплого пола. Как выбрать и установить смесительный узел для теплого пола своими руками

Комфорт в доме — это одна из важнейших составляющих обустройства собственного жилища. Это не только уютная обстановка и современная техника, но и качественная вентиляция, а главное тепло и хороший климат. Именно этому моменту стоит уделить особо тщательное внимание.

Современные технологии предлагают широкие возможности обогрева дома, и наряду с традиционным центральным отоплением все чаще используют систему «теплый пол». Смесительный узел для теплого пола своими руками, это лишь часть работ, которые вам придется выполнить.

Коллектор является неким связующим трубопроводов, распределяет теплоноситель в различных отопительных системах . Простыми словами, это просто труба, которая может соединять и подключать другие трубопроводы.

На всех подобных типах соединений резьбы наносятся с двух сторон: наружной и внутренней. Цена такого устройства зависит от фирмы-производителя и комплектации.

В отопительной системе для теплого пола теплоноситель подается в коллектор, с помощью которого он распределяется по всем петлям . После этого теплоноситель перемещается в обратный коллектор, который направляет его в котел для нагревания. Процесс повторяется снова.

Схема и принцип работы смесительного узла

В состав смесительного узла входят насос и клапан. Но нередко встречаются и более расширенные комплектации.

Циркуляционный насос может находиться на самом котле, но его мощности будет недостаточно. Для теплого пола необходимо поставить отдельно насос на смесительный узел. Таким образом, температура будет свободно регулироваться и понижаться с 70–90 °C до 35–50 °C.

Помимо этого, на смесителе в обязательном порядке находится предохранитель, который отключает насос, как только температура в подаче превышает установленную.

В трубе подачи вода достигает 85 °C. Условные обозначения:

  1. Трехходовой клапан;
  2. Насос;
  3. Датчик температуры;
  4. Обратный клапан.

Обратка проходит от коллектора. Температура теплоносителя в ней равна 40 °C . На ней находится обратный клапан, который предотвращает противоотток воды.

Таким образом, когда термостатическое устройство срабатывает, заслонка автоматически открывается, тем самым подмешивая более холодную воду из обратки. После нормализации температуры, заслонка закрывается.

Двухходовой узел смешивания

Двухходовой или питающий смеситель работает по принципу, описанному выше. После срабатывания термоголовки, он отсекает подачу горячей воды и примешивает воду из обратки. Пол не перегревается, тем самым увеличивается срок его эксплуатации.

Такой тип узла смешивания имеет небольшую пропускную способность, поэтому регулировка подаваемой воды происходит плавно, без скачков . Бо́льшая часть мастеров отдает предпочтение именно этому виду смесителей. Но, к сожалению, для отопительных площадок размером более 200 м² он не подойдет.

Трехходовой клапан

Играет роль пропускного по совместительству с выполнением функций байпасного крана. Но, в отличие от него, внутри трехходовки смешивается горячая вода с холодной обраткой. Как правило, такие приборы оснащены терморегуляторами.

Внутри, между трубой обратки и подачи, располагается заслонка. Благодаря открытию или закрытию оной, регулируется подача воды.

Монтаж и установка смесительного узла для теплого пола своими руками

В связи с высокой стоимостью готового оборудования для теплого пола, рентабельность сборки такого оборудования своими руками довольно высока. К сожалению, справиться с этой задачей смогут не все, но дальнейшая информация будет полезна в любом случае. Итак, материал, который понадобится для монтажа:

  • гайки накидные;
  • ниппели;
  • воздухоотводчик (ручной);
  • термометры;
  • обратный клапан;
  • насос циркулярный;
  • тройники; различные типы соединений и пр.

Технология сборки заключается в монтаже термометров, устанавливающихся в подающий и обратный клапан . Их задача – контролировать градусы транспортируемой жидкости. Принцип работы остальных элементов цепи уже описан ранее.

Насос, за счет циркуляции, будет поддерживать процесс подогрева воды в трубопроводе. Благодаря установке байпаса, система обретет защиту от перегрева. Клапан водного слива, в свою очередь, защитит трубы от разрыва, в случае превышения давления.

После завершения сборки агрегата, он подключается к контурам, с помощью фитингов. Но, прежде чем запустить систему, нужно совершить ее балансировку.

Особенности монтажа:

  1. Собранный или заводской смесительный узел монтируют до контура теплого пола.
  2. Установка может быть как лево-, так и правосторонней .
  3. Узел может крепиться в специальном шкафчике, в самой комнате или в специально отведенном помещении (котельной).
  4. Сначала устанавливают насос и температурный датчик.
  5. К подающей трубе («теплой») присоединяют смесительный, а к обратке – теплый клапан.
  6. Балансировка производится с помощью тестовых включений: при высокой или низкой температуре ее соответственно уменьшают/повышают до тех пор, пока она не будет нормализована.

Подключается теплый пол по схеме, приведенной ниже. Тем не менее, каждый случай подключения имеет свои особенности. К примеру, при однотрубной системе, байпас должен быть постоянно открытым, при двухтрубной же в этом необходимости нет.

Схемы подключения разнятся наличием и отсутствием дополнительных элементов, но это не столь важно. Главное, знать, что на каждую группу коллекторов должны быть установлены клапаны, расходомеры и термостаты.

Одной из технологий «ноу-хау» являются погодозависимые контроллеры. Благодаря им температура теплого пола автоматически регулируется, в зависимости от погоды на улице. Специальные датчики каждые 20 секунд измеряют, сколько градусов на улице и, исходя из этого сдвигают или не сдвигают температуру теплого пола на 4,5 °C.

В заключение инструкции хотелось бы добавить видео, на котором отображены все тонкости монтажа:

Преимущества теплого пола со смесительным узлом:

  1. Долгий срок эксплуатации . Единственный элемент в системе, который сильнее остальных подвержен износу, это труба. Минимальный срок ее износостойкости – 50 лет.
  2. Автоматизированное управление , за счет погодозависимых терморегуляторов. Уровень нагрева корректируется, в зависимости от того, насколько холодно на улице в текущий момент времени.
  3. Возможность использования ручного режима . Подходит для тех, кому больше по душе регулировать температуру своими руками.
  4. Невозможность перегрева системы и разрыва труб , благодаря наличию датчиков-терморегуляторов и специальных клапанов.
  5. Экономичность . При монтаже системы своими руками, можно значительно сэкономить средства.

Как выбрать качественные трубы для теплого пола читайте на

— зачем они нужны, как выбрать, как укладывать.

Правильно произведенный расчет теплого пола позволит не только более качественно уложить систему, но и сэкономит средства на материалы. все нужные формулы.

При наступлении холодов значительно увеличивается оплата за тепло. С постоянным ростом тарифов эта плата становится не всем по карману. Утепленный фасад дома не всегда есть полноценным выходом. Для правильного и точного регулирования температуры теплоносителя разработано специальное устройство, которое хорошо себя зарекомендовало в этой сфере.

Насосно-смесительный узел не только увеличивает эффективность всей системы отопления, но и позволяет держать точно заданную температуру носителя тепла.

1 Предназначение устройства

Рынок насосно-смесительного оборудования и вспомогательных блоков к нему достаточно насыщен. Наиболее хорошо зарекомендовали себя узлы производства компаний Valtec, Tim и Rehau. Не зависимо от конструкционных особенностей, производителя и дополнительных функций устройства подготавливают теплоноситель, циркулируемый в контуре отопления, до заданного пользователем значения. В основном, значения, в зависимости от условий внешней среды задаются от 20 до 60 градусов.

К безусловному назначению также принадлежат:

  • поддержка точно заданного значения температуры во вторичном контуре циркуляции;
  • непрерывная циркуляция теплоносителя в первичном и вторичном контурах;
  • согласованность циркуляции между контурами системы отопления;
  • отслеживание расхода теплоносителя вторичного контура.

Конструкционно насосно-смесительные узлы представляют собой трубопроводные цепи, завязанные между собой и объединяющие первичный и вторичный контуры. В результате смешивания теплоносителя из двух потоков и возможно поддержание установленного температурного значения.

1.1 Сфера использования

Чаще всего, узлы насосно-смесительные применяют для налаженной работы систем отопления пола, обогревают тепличные хозяйства и другие объекты с водяным обогревом.

Актуально применение устройства на объектах с повышенными требованиями к точности температурной уставки и с критичными изменениями температурных режимов.

Расположить узел достаточно просто в любом ограниченном пространстве, так как он имеет небольшие габариты. Для этой цели зачастую оборудуют специальный – коллекторный шкаф, пряча торчащие вентильные соединения и иные приборы.

Чтоб организовать обогрев пола санузла, комнаты и других помещений дома насосный узел комбинируют с дополнительным блоком – коллектором. Коллекторный блок выступает распределителем контурных потоков теплого пола, как гидрострелка.

Брендовые смесительные узлы компании-производители делают совместимыми только со своими коллекторами, которые снабжают всеми необходимыми подсоединительными элементами. К примеру, коллектора Rehau HKV-D и Rehau HKV без проблем соединяются с насосно-смесительным узлом PMG 25 от той же Rehau, а компании Tim и Valtec имеют свои аналоги.

Для нормальной работы смесительный узел не требует применение электронных схем управления, а электрифицировать нужно лишь циркуляционный насос. Такое исполнение делает устройство практически независимым от перебоев снабжения электроэнергией и снижает вероятность аварийной остановки.

2 Что такое коллектор?

Для упрощения организации напольного отопления в быту применяют особое устройство под названием коллектор. Данное устройство является объединителем всех линейных отводов обогрева, включая подачу и возврат. Работа в тандеме со смесительным узлом обеспечивает комфортную температуру в помещении. Использование теплоносителя с первичного контура напрямую невозможно по причине очень высокого температурного режима, требующего внесения корректив.

Важно понимать, что каждый бренд имеет свои особенности в организации узлового блока, но вся сборка, не важно Rehau или Tim, проделывает одну и ту же работу – обеспечивает подачу теплоносителя заданной температуры во все питающие отводы.

Коллекторный узел – это параллельно расположенные две трубы горизонтальной направленности с подключением к подаче и возврату теплоносителя. Вся деталировка и другие конструкционные элементы в основной массе изготовлены из:

  • сплавов слабо поддающихся коррозийным процессам;
  • никеля;
  • латуни;
  • особой пластмассы.

Для контролирования температуры носителя и уровня протока подающее ответвление могут комплектовать термостатическим клапаном, а обратное – сенсорным датчиком протока.

Подающие клапаны могут снабжать ручным регулированием протока носителя. Закручивая такой регулятор, оператор может перекрыть подачу тепла на ответвление в ручном режиме. Визуализацию контроля протока для выполнения действий по гидробалансировке системы позволяют осуществить проточные сенсоры.

Более дешевые варианты коллекторных блоков не имеют дополнительных датчиков и индивидуализированных регулировочных возможностей.

Температурные и режимы давления наблюдают по средству установленных термометра и манометра. Спуск накапливаемого воздуха в системе обеспечивают отдельным вентилем.

Дополнительные конструктивные элементы, датчики и опции могут поставляться под заказ или на усмотрение производителя. Бренд Рехау имеет практику комплектовать узел в сборе. На примере насосно-смесительного узла PMG-25 стандартной сборки в комплекте поставляют:

  • смесительный 3-х ходовой вентиль с трех позиционным сервоприводом переменного тока на 230В модели kvs=8,0м3/ч с D y =25;
  • термометры на подаче и возврате теплоносителя;
  • насос энергощадящий до 45Вт с возможностью регуляции напора до 6 м.

Собранные и смонтированные части с применением уплотнений уже прошли гидроиспытания давлением.

2.1 Особенности работы коллекторно-смесительного тандема

Пара насосно-смесительный узел и коллектор работают по следующему принципу. Циркуляционный насос блока проталкивает теплоноситель по всем ответвлениям коллектора. С падением температурных показателей ниже установленного оператором температурного предела трех- (иногда двух-) ходовой клапан, постепенно приоткрываясь, делает вливание горячего теплоносителя в линию. Образовавшийся лишний объем теплоносителя перетекает с обратной линии в первичный контур общетепловой системы. Расход по малых контурах регулируется автоматически или с помощью ручного режима.

Все системные сбои и неисправности, такие как повышенное давление, отсекают предохранительные клапаны или байпасы. Также не исключены другие предохранительные меры, которые применяют до полного восстановления гидравлической сбалансированности системы, чтобы сберечь исправность насоса и общую работоспособность.

2.2 Какие отличительные особенности насосно-смесительных узлов?

До широкого применения в быту автоматического смешивания потоков первичного и вторичных контуров с помощью трех- и двухходовых клапанов в пользовании находилось устройство, так званная, гидрострелка.

В насосно-смесительном блоке разделение теплоносителя на потоки осуществляется принудительно, непрерывность потока разделяется только за счет движения воды. А гидрострелка имеет область со свободной зоной смешивания води, и подача теплоносителя осуществляется с помощью размещенного на каждом ответвлении своего насоса.

Насосно-смесительный узел располагает мгновенным смешиванием двух потоков контуров, а гидрострелка смешивает потоки по средству природного физического процесса.

Сравнить по скорости регулирования температуры двумя устройствами можно на примере накопительного и проточного бойлеров. Но в этом случае проточный способ будет еще и много экономней накопительного.

Монтаж устройств следует осуществлять строго соответствуя инструкциям компаний-производителей.

Вход и выход из первичного отопительного контура необходимо смонтировать со смесительным узлом или через тепловой коллектор.

Стандартно соединительный размер с первичными выводами составляет 1 дюйм, а вторичные отводы и коллектор обвязывают комплектно поставляемыми соединителями. Размер последних может варьироваться в зависимости от брендовой модели. Уплотнители на резьбовых частях соединителей гарантируют надежность и быстроту монтажа без дополнительных средств (герметиков, фум-ленты, пакли и т.д.).

Термическую головку следует установить вручную с максимальными значениями настроек.

Насос для циркуляции теплоносителя устанавливают между двумя вентилями с предварительным уплотнением.

С окончанием монтажа и статических проверок соединений наступает время испытаний системы отопления в сборе. До подачи питания на электронасос следует убедится в открытии все запорных элементов на пути движения носителя, чтобы избежать перегрузок и аварийных ситуаций, связанных с этим.

До появления насосно-смесительного узла монтаж, расчеты и настройка работы отопления занимала уйму времени, и была очень сложной инженерной задачей. Блок смесительный — готовое решение задач организации контурированной системы обогрева. Доукомплектовав узел, пользователь избежит допущенных ранее ошибок конструкции системы. А относительно несложная настройка исключает необходимость специальных регулировочных приспособлений.

Подробная инструкция поможет сэкономить пользователю оплату работ монтажной организации или осуществить грамотный контроль для принятия работ по монтажу.

3.1 Как устроен Насосно-смесительный узел для теплого пола? (видео)

Системы теплых полов, по которые еще мало кто слышал полтора десятка лет назад, прочно вошли в обиход современных домов и квартир, особенно у тех хозяев, кто думает о создании максимального комфорта проживания в своих владениях. В рекламных газетах – масса объявлений об услугах по монтажу систем прогрева пола, но таково уж «устройство» многих наших мужчин, что у них просто «руки чешутся» делать все собственными силами.

Так, в обычных высокотемпературных системах нагрев воды в трубах подачи обычно балансирует на уровне 70÷80 °С, а в ряде случаев может даже превышать эти границы. Именно под такие режимы эксплуатации создавались ранее и преимущественно создаются теперь тепловые магистрали, выпускается подавляющее большинство моделей котельного оборудования.

Но те температурные режимы, что считаются нормой для классических систем отопления, совершенно не приемлемы в условиях эксплуатации «тёплых полов». Это объясняется следующими обстоятельствами:

  • Если принять в расчет площадь активного теплообмена (практически вся поверхность пола в помещении), и присовокупить сюда еще и весьма внушительную теплоёмкость стяжки, в которую заключены трубы «теплого пола», то очевидно, что для достижения в комнате камфорной температуры большого нагрева и не требуется.
  • Порог комфортного восприятия нагрева поверхности пола босой ногой тоже ограничен – обычно для этого достаточно температуры до 30 °С. Согласитесь, будет не особо приятно, если снизу начнет «припекать».

  • Подавляющее большинство финишных напольных покрытий, применяемых в жилых комнатах, не рассчитано на сильный нагрев. Превышение температуры выше оптимальной приводит к деформациям, к появлению щелей между отдельными деталями, к выходу из строя замковых соединений, к образованию волн или «горбов» и другим негативным последствиям.

  • Высокие температуры нагрева вполне способны деструктивно влиять и на состояние бетонной стяжки, в которой «покоятся» трубы контуров «теплого пола».
  • Наконец, повышенные температуры совершенно не полезны и трубам проложенных контуров. Следует правильно понимать, что они жестко зафиксированы в стяжке, лишены возможности свободного термического расширения, и при высоких температурах в стенках труб будут возникать весьма сильные внутренние напряжения. А это – прямой путь к быстрому износу, к повышению вероятностей появления протечек.

В последнее время в продаже появились модели , которые вполне могут работать в режиме «теплого пола», то есть давать низкотемпературный нагрев. Но есть ли смысл приобретать новое оборудование, если есть возможность обойтись имеющимся? Кроме того, «тёплые полы» в «чистом» виде применяются не столь часто – обычно они в масштабах одного дома комбинируются с «классикой». Ставить два раздельных котла? — очень расточительно. Лучше несколько усовершенствовать свою систему, выделив из нее участок «тёплых полов», и на границе этого разделения как раз и установить тот самый насосно-смесительный узел, о котором будет вестись речь.

Есть и еще одно обстоятельство, объясняющее необходимость насосно-смесительного узла. Одно дело – обеспечить циркуляцию в основном контуре отопления, и другое – в проложенных контурах теплого пола, каждый их которых достигает в длину десятков метров, с многочисленными изгибами и поворотами, дающими значимый прирост гидравлического сопротивления. Значит, необходимо выделенное насосное оборудование, которое также, как правило, входит в схему этого узла, что, кстати, отражается и на его названии.

Принцип работы смесительного узла

Задача понятна – необходимо, не нарушая режима работы основной системы отопления, добиться того, чтобы в контурах «теплого пола» циркулировал теплоноситель с гораздо более низким уровнем нагрева. Как этого добиться?

Ответ напрашивается сам собой – качественным регулированием, то есть подмесом в горячий поток более холодного. Полная аналогия с тем, что мы проделывает неоднократно каждый день, настраивая температуру воды в душевой или в кухонном смесителе.

Цены на теплый пол

теплый пол


С горячим потоком – все понятно, а вот откуда взять охлажденный? Да из проходящей рядом трубы «обратки», по которой теплоноситель, отдавший тепло в приборах отопления или в контуре «тёплого пола», возвращается обратно в котельную. Изменяя пропорции подмеса горячей и охлажденной жидкости, можно добиться требуемой температуры.

Безусловно, по сложности устройства смесительный узел весьма существенно отличается от обычного бытового крана. Так и задачи перед ним стоят более ответственные!

Так, смесительный узел должен уметь работать без постоянного вмешательства человека – автоматически отслеживать уровни температуры и вносить оперативные изменения в процесс смешивания потоков, изменяя их количественно. Нередко возникает ситуация, когда в дополнительном поступлении тепла и вовсе нет необходимости, и оборудование должно просто «запереть» контур, обеспечивая только внутреннюю циркуляцию теплоносителя по нему, до требуемого остывания.

Складывается впечатление, что все это очень мудрено для неспециалиста. Действительно, если посмотреть на насосно-смесительные узлы заводского производства, предлагаемые в продаже, то, на первый взгляд, разобраться в хитросплетении труб, кранов, клапанов и т.п. – очень непросто. А стоимость подобных сборок выглядит весьма пугающей.


Но, оказывается, на практике реализуется всего несколько ходовых схем, и если понять принцип их действия, тол подобный насосно-смесительный узел вполне можно собрать и собственными силами. Разбору этих схем мы и посвятим следующий раздел нашей публикации.

Необходимо сразу внести одну ясность – данная статья посвящена именно насосно-смесительным узлам, а вот подключаемые к ним коллекторы подачи и «обратки» упоминаться, безусловно, будут, но в их устройство углубляться не станем. Просто по той причине, что этот узел системы «теплого пола», а именно – его устройство, принцип действия, порядок сборки и балансировки, все же требуют подробного рассмотрения в отдельной публикации.

Схемы насосно-смесительных узлов и принципы их действия

Изо всего разнообразия схем подобных смесительных узлов было выбрано пять. Основными критериями выбора служили простота восприятия принципа работы и доступность в самостоятельном изготовлении. То есть предлагаемые конструкции вполне можно собрать из деталей, имеющихся в свободной продаже, и для этого не требуется специальной подготовки – достаточно устойчивых навыков в проведении обычного сантехнического монтажа.

Схемы, безусловно, различаются, но для простоты их восприятия они сделаны по одному графическому принципу, с сохранением изображений и нумераций одинаковых элементов. Новым деталям, которые будут появляться в схемах, будут присваиваться буквенные обозначения по нарастанию.

Во всех схемах принята одна ориентация – подвод труб подачи и «обратки» слева, а выход на «гребенки» - коллектор теплого пола – справа. Цветовая маркировка труб наглядно говорит об их предназначении. Сам коллектор в реальности может непосредственно примыкать к насосно-смесительному узлу (так бывает чаще) или даже располагаться на некотором отдалении от него – это зависит от особенностей помещения и свободного места для размещения оборудования. На принципе работы схемы это нисколько не отражается.

Трубы могут использоваться любые, по желанию мастера – от обычных стальных ВГП до пластиковых (полипропилен или металлопласт) или гофрированной нержавейки. Соответствующим образом будут меняться и некоторые комплектующие. Так, например, на схемах показаны латунные тройники или отводы, но они могут быть исполнены и из иных материалов.

Соответствующими утолщенными стрелками с изменяемыми оттенками показаны направления потоков теплоносителя.

СХЕМА №1

В данной схеме используется обычный термоклапан, как для радиаторов отопления. Циркуляционный насос расположен последовательно.

Схема считается одной из наиболее простых для монтажа, но она вполне действенная.


Давайте подробно пройдемся по деталям и устройствам, составляющим схему:

  • «а» – трубы, показанные с цветовой маркировкой, для простоты восприятия. Как уже отмечалось, могут применяться различные типы труб, лишь бы они соответствовали по своим характеристикам условиям эксплуатации в системе отопления.

— «а.1» – вход трубы подачи из общего контура системы отопления;

— «а.2» – выход в трубу «обратки»;

— «а.3» – подача на коллектор «теплого пола»;

— «а.4» – возврат теплоносителя с коллектора.

  • «б» - запорная арматура – шаровые краны. Важно – они не играют никакой роли в процессе регулировки температуры или давления в системе «теплого пола». Их функциональность ограничена, но вместе с тем – не менее важна. Наличие кранов позволяет производить отключение отдельных узлов системы отопления, когда это вызвано необходимостью, например, проведения каких-либо ремонтно-профилактических работ.

Особых требований к конструкции запорных кранов для смесительного узла не предъявляется, кроме, пожалуй, качества их исполнения. Но желательно применять краны, оснащенные накидной гайкой-«американкой» (как показано на иллюстрации), что позволит быстро проводить демонтаж узла, не прибегая к сложным операциям. Соответственно, на входе («б.1» и «б.2» ) эти накидные гайки должны быть со стороны смесительного узла.

Краны «б.3» и «б.4» (между смесительным узлом и коллектором) нельзя назвать обязательными элементами системы, но лучше не пожалеть денег и на них. Их наличие позволяет отключать коллектор и полностью демонтировать узел, не сбивая выверенной балансировки контуров.


Этот элемент можно и не ставить, но только в том случае, если есть полная уверенность в чистоте циркулирующего теплоносителя. Обычно фильтрующие устройства предусматриваются на уровне котельной. Тем не менее, чтобы полностью исключить вероятность попадания твердых взвесей в область точной регулировки «теплых полов», можно и подстраховаться.

Стоит такой фильтр недорого, но зато появится гарантия, что в клапанные устройства самого смесительного узла и настроечных механизмов контуров не попадут никакие твердые частицы, способные нарушить их корректную работу. Кроме того, следует помнить, что твердые взвеси в теплоносителе ускоряют износ уплотнений клапанов.

  • «г» – приборы для визуального контроля температуры теплоносителя (термометры).

Тип термометра может быть любой – как удобно мастеру. Так, применяются приборы с зондами, которые контактируют непосредственно с теплоносителем. Если попроще – можно приобрести накладную модель, но замер уже будет вестись по температуре стенки трубы. Термометр может быть жидкостной, механический со стрелочным указателем или даже цифровой – он удобен при использовании электронных систем управления системами отопления.

На схеме показан вариант с использованием трех термометров:

«г.1» – замеряет температуру в общей трубе подачи системы отопления;

«г.2» – для контроля температуры теплоносителя, подаваемого со смесительного узла на коллектор;

«г.3» – позволяет отслеживать разницу температур на входе и выходе коллектора. Оптимально эта разница не должна превышать 7÷10 градусов.

Такое расположение приборов видится оптимальным, так как дает наиболее полную картину корректности работы системы. Впрочем, многие мастера из соображений экономии обходятся и меньшим количеством термометров.

  • «д» – основной управляющий элемент смесительного узла данной конструкции – термостатический клапан. Это точно такой же клапан, что обычно монтируется на батареях отопления.

Небольшая тонкость. В продаже представлены клапаны для радиаторов, рассчитанные на однотрубную и двухтрубную системы отопления. В нашем случае для смесительного узла предпочтительнее будет модель для однотрубной системы, как более производительная. Ее легко отличить по ряду признаков: такой клапан имеет несколько больший диаметр «бочонка», в маркировке присутствует буква « G», а защитный колпачок – серого цвета.

Направление тока теплоносителя указано на корпусе клапана стрелкой.

  • «е» – термостатическая головка, которая надевается на термоклапан (с помощью накидной гайки М30 или специальным типом фиксации). Важно – в данном случае требуется головка только с выносным датчиком («ж» ), соединенным с нею капиллярной трубкой.

Устройство головки таково, что при изменении температуры меняется и ее механическое воздействие на шток термоклапана – при повышении клапан закрывается, при понижении – наоборот, открывает проход теплоносителю.

Как устроены и как действуют терморегуляторы для радиаторов отопления?

В данной публикации детально останавливаться на этих устройствах не станем. Это из тех соображений, что подробно рассмотрены в отдельной статье нашего портала.

Термодатчик накладывается на трубу – для этого имеются специальные пружинные фиксаторы. Но сразу возникает вопрос – а где именно он должен стоять?

Возможны два варианта, каждый из которых хорош по-своему.

Первый вариант : датчик стоит на трубе подачи от смесительного узла в коллектор «тёплого пола». Преимущества такого подхода – в контуры поступает теплоноситель со стабильной температурой, то есть полностью исключается возможность перегрева. Недостатки – система смешения никак не реагирует на изменение внешней температуры (если, конечно, соответствующие дополнительные устройства не размещены на самом коллекторе). Например, при похолодании в помещении или подъеме температуры, смесительный узел все равно будет подавать на контуры теплоноситель с неизменяемым уровнем нагрева.

Второй вариант : датчик стоит на трубе обратки от коллектора до смесительного узла (до перемычки, в районе термометра «г.3»). Преимущества – стабильность температуры именно на этом участке, то есть с учетом уже отданного в помещение тепла. А вот уровень нагрева теплоносителя в трубе подачи на коллектор будет варьироваться в соответствии с изменением внешних условий. Похолодало в комнате – контуры отдали больше тепла – термоклапан приоткрылся больше, и соответственно, наоборот. Недостатки – наличие вероятности перегрева в контурах «тёплого пола». Например, после заполнения системы при первом ее пуске в коллектор на первых порах будет подаваться слишком горячая вода, пока не прогреется стяжка. Другой вариант – слишком резкое похолодание в помещении (например, экстренное проветривание открытием окон настежь) также может дать приток в контуры слишком горячего для них теплоносителя.

Впрочем, при продуманной эксплуатации всего этого негатива можно избежать. А еще лучше – предусмотреть участки для размещения на обеих трубах в указанных выше местах. Переставить такой датчик – минутная задача, не требующая никаких инструментов.

  • «з» – сантехнические тройники, с помощью которых между трубами подачи и обратки формируется перемычка – байпас («и» ). Через этот байпас и будет осуществляться отбор охлаждённого теплоносителя для его смешивания. А сам процесс смешивания, по сути, проходит в тройнике «з.1» .
  • «к» – балансировочное устройство. На байпасе рекомендуется установить вентиль (можно даже обычный сантехнический), с помощью которого проводится точная настройка системы после ее запуска, в частности, необходимых показателей напора и производительности циркуляционного насоса. Наличие такой регулировки позволяет «придушить» поток, чтобы в коллекторе и самом смесительном узле не образовывалось зон с чрезмерно повышенным давлением или, наоборот, разрежением. Насос станет работать в наиболее оптимальном режиме, снизится шумность системы.

Оптимальное решение – установка не сантехнического вентиля, а так называемого блок-крана, такого, какой частенько ставится на «обратке» радиатора отопления. По функциональности, в принципе, разницы нет никакой, но в плане обеспечения сохранности настроек – она очевидна. Балансировка проводится специальным ключом, а после этого регулировочное устройство закрывается защитной заглушкой. То есть до него не дотянутся, например, шаловливые детские ручки.

  • «л» – циркуляционный насос, обеспечивающий перемещение теплоносителя по контурам «теплого пола».

В основной системе отопления, безусловно, есть свое насосное оборудование, но «теплым полам» как правило, выделяется отдельный насос, с учетом протяженности и разветвленности проложенных контуров труб. Насос – обычный, а его параметры рассчитываются индивидуально для каждого смесительного узла – об этом речь еще пойдет ниже.

Цены на термоклапаны

термоклапан

Циркуляционные насосы – устройство, принцип действия, выбор оптимальной модели

Системы отопления с естественной циркуляцией встречаются все реже – предпочтение отдается схемам с установленным насосным оборудованием. Как устроен , и с какими оценочными критериями подходят к его выбору – читайте в специальной публикации нашего портала.

  • «м» – сантехнический обратный клапан. Это всем знакомая деталь, которая пропускает поток жидкости только в заданном направлении.

Насколько он нужен? В процессе смешивания, безусловно, он никакой роли не играет, но вот для обеспечения постоянной корректности работы может стать нелишним. Представим ситуацию – в контурах температура такова, что притока тепла не требуется, и термоклапан полностью перекрыт. Но насос продолжает работать, и циркуляция в контурах не прекращается. И вот здесь возможно явление подсасывания теплоносителя из общей трубы обратки системы отопления. А ведь там температура даже намного выше, чем должна быть в подаче «теплого пола». Подобный приток несанкционированного тепла может здорово разбалансировать работу смесительного узла, но установка клапана полностью снимает даже малейшую вероятность такого явления.

Теперь перейдем к рассмотрению принципа действия этой схемы.

Теплоноситель поступает из общей трубы подачи, доочищается на «косом фильтре». На термоклапане поток заметно снижается за счет прикрытой задвижки, уменьшающей сечение свободного прохода. За изменение положения клапана отвечая термостатическая головка, передающая механическое усилие на его шток, в зависимости от температуры на выносном

Циркуляционный насос работает постоянно, и перед ним, в области тройника «з.1» создается зона разрежения, которая затягивает и изменяющийся поток горячего теплоносителя, и охлаждённого – из трубы обратки через байпас. Потоки соединяются именно в упомянутом тройнике, смешиваются, и в таком виде, с нужной температурой, прокачиваются насосом далее на коллектор «теплого пола».

Если термодатчик показывает, что уровень нагрева достаточен или даже избыточен, клапан будет полностью закрыт, и насос станет просто прокачивать теплоноситель по кругу, без притока его извне. По мере постепенного остывания теплоносителя клапан приоткроется, чтобы добавить очередную «порцию» тепла, так, чтобы температура приняла необходимое значение.

Как видно, приток горячего теплоносителя при хорошо отлаженной системе будет не особо большим – в нормальном положении при стабильной работе узла, клапан бывает едва приоткрытым. Но в случае изменения внешних условий термоголовка внесет необходимые коррективы.

В данной схеме циркуляционный насос расположен таким образом, что он полностью перекачивает весь поток теплоносителя на коллектор «теплого пола». Этот принцип называют последовательным расположением насоса.

СХЕМА №2

Схема во многом повторяет первую, но вместо обычного термоклапана в ней применяется трёхходовой.


Итак, смотрим на особенности конструкции:

Вместо верхнего тройника устанавливается трехходовой смесительный термоклапан («н» ), а обычный клапан из схемы, соответственно, изъят. Управляет же этим устройством все та же термоголовка с выносным датчиком, что и в первой схеме. Положение датчика также не изменяется – один из двух упомянутых выше вариантов.


Смешение потоков происходит непосредственно в корпусе трехходового клапана. Он устроен таким образом, что при изменении положения штока один проход приоткрывается а второй пропорционально закрывается.

Необходимо обратить особое внимание на один нюанс. Такие клапаны могут быть не только смесительного, но и, наоборот, разделительного принципа действия. На показанной схеме требуется клапан именно смесительный, то есть с двумя сходящимися потоками. Как правило, на корпусе изделия имеется соответствующее указание – стрелки, демонстрирующие направление потоков теплоносителя.


Показанная схема может иметь и иную вариацию – термоклапан установлен вместо нижнего тройника, но здесь, понятно, уже должна стоять разделительная разновидность изделия. То есть управляться температура станет изменением подаваемого потока из обратки.


Трехходовые краны могут и не требовать термоголовки - у многих моделей имеются свои встроенный датчики температуры. Правда, некоторые мастера выражают мнение, что с выносным датчиком система работает все же корректней, и вероятность возникновения нештатных ситуаций – гораздо ниже.

На схеме показан (полупрозрачным) еще и («м1» ), установленный на байпасе. Он бывает необходим в тех случаях, когда автоматика управляет еще и работой циркуляционного насоса. Если клапана не будет, то в режиме простоя циркуляции байпас становится обычной неуправляемой перемычкой, что сразу сказывается на сбалансированности узла и на работе других отопительных приборов системы отопления. Но в большинстве случаев, когда насос работает постоянно, такая деталь в схеме не требуется, а многие мастера вообще считают ее вредной, так как такой клапан создаёт дополнительное гидравлическое сопротивление.

Когда выгодно использовать такую схему с трехходовым клапаном? Как правило, она находит применение в крупных смесительных узлах, к которым подключено несколько контуров, причем – различной протяженности. Оправдана одна и в системах отопления, которые управляются погодозависимой автоматикой, так как изменение параметров в них идет не только за счет клапана, но и за счет изменения режимов работы циркуляционного насоса. В небольших системах применение подобной схемы – не особо приветствуется, так как она будет сложнее в регулировке.

СХЕМА №3

Еще одна вариация схемы с последовательным расположением циркуляционного насоса. В этот раз также применен трёхходовой термоклапан («н.1» ), но уже иной компоновки – он смешивает два сходящихся по одной линии потока и перенаправляет их в центральный патрубок.


Такие клапаны имеют соответствующую маркировку – стрелочную или цветовую, что позволяет не ошибиться в выборе.


В остальном же схема – полный аналог предыдущей. Байпаса может вообще не быть – вместо него смонтирован трёхходовой клапан, что дает немалую экономию места, и схема получается более компактной.

СХЕМА №4

Эта и следующая схема имеют коренное отличие от рассмотренных выше, и это принципиальная разница заключается в расположении циркуляционного насоса


Как видно из схемы, никаких новых элементов в ней не появилось. Трубы подачи и обратки со стороны общей системы – остались на месте, а вот со стороны коллектора – поменялись местами. Байпас, естественно, остается, но получается, что потоки горячего и остывшего теплоносителя встречаются в его верхней точке. А на самом байпасе разместился циркуляционный насос, обеспечивающий прокачку сверху вниз.

Принцип работы заключается в следующем. Поток горячего теплоносителя проходит через термоклапан, где дозируется до нужного количества, и встречается в верхнем тройнике байпаса с потоком из «обратки» коллектора. Стоящий на байпасе насос захватывает эти оба потока и прокачивает вниз. Таким образом, микширование происходит как в верхнем тройнике, так и в рабочей камере самого насоса.

В нижней точке байпаса, в тройнике, поток вновь разделяется. Большая часть прокачанного теплоносителя уже нужной температуры обычно возвращается в коллектор и далее – в контуры «теплого пола». А образовавшийся излишек – просто сбрасывается в «обратку» основного контура общей системы отопления.

— Производительность системы снижается, так как часть перемешанного теплоносителя попросту сбрасывается в линию «обратки».

— Подобная схема – намного сложнее в балансировке, так как необходимо добиться полного постоянного заполнения контуров «теплого пола», без участков разрежения, и только избыточное количество отправить в «обратку». Часто это требует установки дополнительных балансировочных элементов, например, блок-кранов или перепускных клапанов.

Теплые полы рехау (rehau) являются одним из лидеров среди аналогичных обогревательных систем. Если правильно выбрать и установить подходящий вариант, можно обеспечить комфортабельную атмосферу в комнатах и долгое время не задумываться об отоплении в помещении.

Дополнительное оборудование для теплых полов Рехау

теплый пол сделает кухню уютнее

В комплекте к основным материалам для установки теплого пола прилагаются дополнительные элементы, которые применяются при монтаже конструкции.

Шины RAUFIX

Монтаж теплого пола:

Уход и правила эксплуатации

Уход за теплым полом не слишком трудоемкий, но так как вся система находится в глубине.

После правильной укладки теплого пола и монтажа напольного покрытия необходимо выждать некоторое время, а затем можно спокойно ходить по полу, устанавливать на него даже довольно тяжелые бытовые элементы, так как системы Рехау отличаются надежностью и высоким показателем твердости. Про материалы для теплых водяных полов можно прочитать .

Выбирайте правильное половое покрытие

Следует избегать возможности нанесения повреждений конструкции отопительной системы, аккуратно эксплуатировать отдельно стоящие элементы, такие как регулировочные установки и другое важное оборудование. По возможности нужно исключить доступ детей к устройствам, служащим для контроля и управления подачи воды и ее нагрева, чтобы избежать резких скачков температур.

При необходимости следует предпринимать обслуживание и своевременный ремонт конструкции. Обычно эти действия осуществляет компетентный мастер. Уход за теплыми полами Рехау не представляет важности. Следует поддерживать чистоту и надлежащий внешний вид напольного покрытия. Вся система заглублена в пол, поэтому самым важным действием, требующимся от пользователей, является проявление аккуратности при эксплуатации. Также рекомендуем ознакомиться с технологией монтажа, укладки и установки теплого водяного пола .

За и против теплых полов смотрите видео:

Является одним из лидеров на рынке аналогичных систем, так как отличается не только выдающимися эксплуатационными характеристиками и удобством в использовании, но и является довольно экономичным, так как не оставляет отходов при монтаже и практически не требует ремонта. Если установить его правильно, можно долго пользоваться комфортным и надежным отоплением.

Применение теплых водяных полов для отопления жилых помещений позволяет получить массу преимуществ по сравнению с другими способами отопления.

Однако, теплые водяные полы нуждаются в регулировании. В противном случае все преимущества от применения теплых водяных полов обернутся сильным дискомфортом.

Поскольку теплые полы - это часть системы отопления дома, то их применение и вопросы регулирования теплых полов должны учитываться еще на этапе проектирования всей системы отопления.
С этой целью в котельной обычно устанавливают насосную группу , которая позволяет поддерживать в контурах теплого пола заданную температуру. Такое регулирование температуры теплоносителя достигается путем подмеса горячего теплоносителя (от котла) в контуры теплого пола, где происходит его постепенное остывание в результате теплоотдачи в окружающее пространство.

Следующим этапом терморегулирования теплых полов является уже регулирование параметров в контурах теплых полов, с целью поддержания комфортных условий в отдельных помещениях.

Терморегулирование отдельных контуров теплого пола осуществляется за счет управлением поступления теплоносителя в такие контуры путем периодического перекрытия проходного сечения в коллекторе теплого пола . Для этого на коллекторе теплого пола устанавливают сервоприводы, которые воздействуют на шток регулятора расхода. Управляет работой сервопривода терморегулятор теплого пола.

Важный момент: терморегулятор теплого пола может измерять температуру воздуха или температуру самого пола . Это зависит от системы отопления. Например, в санузлах обычно требуется поддержание комфортной температуры пола, причем, это не зависит от сезона. В этом случае терморегулятор должен регистрировать температуру самого пола (стяжки).
А в жилых помещениях температура теплых полов может меняться в зависимости от сезона. В таком случае следует управлять теплым полом в зависимости от температуры воздуха в помещении. Отсюда следует, что, при изменении уличной температуры, температура теплого пола тоже должна меняться.

Применение теплых водяных полов в сочетании с радиаторным отоплением диктует несколько другие требования к терморегулированию теплых полов.

Это далеко не все задачи, которые возникают при терморегулировании теплых полов или подогрева открытых площадок, дорожек, пандусов, систем снеготаяния.

Часто полезно упростить систему отопления и применять для теплых водяных полов горячий теплоноситель, который присутствует в системе радиаторного отопления. С этой целью REHAU разработаны устройства, которые размещаются непосредственно на коллекторах теплого пола и подключены к системе радиаторов (радиаторного отопления).

Применение контроллеров и таймеров для терморегулирования теплыми водяными полами позволяет не только объединить всю систему управления отоплением дома, но и осуществлять ее дистанционный мониторинг и управление, используя для этого облачные технологии.

Для решения всех задач терморегулирования теплыми полами следует обращаться к квалифицированным специалистам. Они могут предложить оптимальный вариант решения Ваших задач. В противном случае, как сказано выше, неправильное решение может не только обесценить все полезные преимущества от применения теплых водяных полов, но и оказаться весьма затратным как в части реализации, так и в части эксплуатации.




питание 220В питание 24В (с понижающим трансформатором)


Управление теплым полом при подключении к радиаторному отоплению по температуре стяжки

питание 220В питание 24В (с понижающим трансформатором)

При монтаже теплых водяных полов своими руками
мы консультируем
по вопросам терморегулирования теплого пола, системам автоматики для управления теплыми водяными полами , осуществляем поддержку
при выполнении монтажных работ, предлагаем профессиональный инструмент Рехау в аренду
и шеф-монтаж
Пишите