Эмпирический уровень научного исследования. Пример метода моделирования

Рассматривая конкретные методы научного познания, следует понимать, что умение использовать эти методы всегда предполагает наличие специализированных знаний. Это важно учитывать потому, что любые формы и виды научной деятельности обязательно предполагают соответствующую подготовку тех специалистов, которые ею занимаются . Эмпирические методы познания – в том числе даже самый «простой» из них – наблюдение – для своего проведения предполагает, во-первых, наличие определенных теоретических знаний, а, во-вторых, использование специального и часто очень сложного оборудования. Кроме этого, проведение любых научных исследований всегда предполагает наличие определенной проблемной ситуации, в целях разрешения которой и проводятся эти исследования . Поэтому эмпирические методы научного познания – это совсем не то же самое, что и относительно похожие способы изучения реальности, которые проводятся с точки зрения здравого смысла и в рамках обыденно-практической установки.

К эмпирическим методам научного познания относятся:

1. Наблюдение;

2. Эксперимент;

3. Измерение.

Среди названных методов научного познания наблюдения является относительно самым простым методом, так как, например, измерение, предполагая проведение дополнительных процедур, в качестве своей основы обязательно предполагает и соответствующее наблюдение.

Наблюдение

Научное наблюдение – это целенаправленное восприятие предметов, явлений и процессов, как правило, окружающего мира. Отличительная особенность именно наблюдения состоит в том, что это метод пассивной регистрации тех или иных фактов действительности. Среди видов научных наблюдений можно выделить следующие:

В зависимости от цели наблюдения можно разделить на проверочные и поисковые ;

По характеру существования того, что исследуется, наблюдения можно разделить на наблюдения предметов, явлений и процессов, которые существуют объективно , т.е. вне сознания наблюдателя, и интроспекцию, т.е. самонаблюдение ;

Наблюдение объективно существующих предметов принято делить на непосредственные и косвенные наблюдения.

В рамках разных наук роль и место метода наблюдения разная. В некоторых науках наблюдение – это практически единственный способ получения исходных достоверных данных. В частности, в астрономии. Хотя эта наука по существу является прикладным разделом физики и поэтому она основывается на теоретических представлениях этой фундаментальной естественной науки, однако многие данные, которые актуальны именно для астрономии, могут быть получены только посредством наблюдения. Например, знания об объектах, которые расположены на расстоянии нескольких световых лет. Для социологии наблюдение – это также один из основных методов эмпирического научного познания.



Научное наблюдение для своего успешного проведения предполагает наличие проблемной ситуации, а также соответствующего концептуально-теоретического обеспечения. В основе научного наблюдения, как правило, лежит какая-либо гипотеза или теория, для подтверждения или опровержения которой и проводится соответствующее наблюдение . Роль и место концептуальных факторов в научном наблюдении, а также специфику их конкретных видов можно показать с помощью следующих примеров.

Как известно, люди наблюдали движение объектов на небе с незапамятных времен и в результате этого пришли к вполне естественному в рамках здравого смысла выводу о том, что Земля с находящимися на ней наблюдателями стоит неподвижно, а вокруг нее по правильным круговым орбитам равномерно двигаются планеты. Для того чтобы объяснить, почему эти планеты не падают на Землю, а парят в пространстве, было высказано предположение, что Земля находится внутри нескольких прозрачных стеклоподобных сфер, в которые как бы вкраплены планеты и звезды. Вращение этих сфер вокруг своей оси, которая совпадает с центром нашей планеты, приводит к тому, что поверхность сфер начинает двигаться, увлекая за собой прочно закрепленные на ней планеты.

Хотя это представление является совершенно неверным, однако оно вполне согласуется с соответствующей логикой здравого смысла, согласно которой для того, чтобы тело постоянно двигалось и никогда не падало, оно должно за что-либо держаться (в данном случае, быть прикрепленным к прозрачным сферам). Представление о том, что возможно постоянное движение тела по замкнутой траектории без того, чтобы его кто-либо поддерживал, для мышления в рамках здравого смысла соответствующей эпохи кажется невероятным. Следует заметить, что, по своему, здравый смысл «прав»: дело в том, что, действительно, в рамках естественного, обыденного и дотеоретического восприятия движения тел на Земле мы не видим ничего, чтобы могло бы все время перемещаться по замкнутой траектории, паря и не касаясь чего-либо, и при этом не падать. Ньютон, который открыл закон всемирного тяготения, естественно тоже наблюдал движение различных земных и космических тел, в том числе, и Луны. Однако он не просто смотрел на них, но использовал наблюдения для того, чтобы на их основе понять то, что увидеть нельзя. А именно: сопоставив данные скорости движения Луны вокруг Земли и их расстояния между собой с характеристиками движения падающих на Землю тел, он пришел к выводу, что за всем этим скрыта единая и общая закономерность, которая и получила название «закона тяготения».

Данный пример можно рассматривать как случай поискового наблюдения, результатом которого стала формулировка соответствующего закона. Целью поискового наблюдения является сбор фактов как первичного эмпирического материала, на основе анализа которого может быть выделено общее и существенное. Проверочное наблюдение отличается от поискового тем, что здесь конечной целью является не поиск нового теоретического знания, а проверка уже существующего. Проверочное наблюдение – это попытка верификации или опровержения какой-либо гипотезы. Примером такого наблюдения является, допустим, попытка убедиться в том, что закон тяготения носит действительно всемирный характер, т.е. что его действие распространяется на взаимодействие любых массивных тел. Из этого закона, в частности, следует, что чем меньше масса взаимодействующих тел, тем меньше и сила притяжения между ними. Поэтому если мы сможем наблюдать, что сила притяжения у поверхности Луны меньше аналогичной силы у поверхности Земли, которая тяжелее Луны, то из этого следует, что данное наблюдение подтверждает закон тяготения. В ходе полета космонавтов можно наблюдать феномен невесомости, когда люди свободно парят внутри корабля, фактически не притягиваясь ни к одной его стенке. Зная, что масса космического корабля практически ничтожна по сравнению с массой планет, данное наблюдение можно рассматривать как еще одну проверку закона тяготения.

Рассмотренные примеры можно считать случаями непосредственных наблюдений объективно существующих объектов. Непосредственные наблюдения – это такие наблюдения, когда соответствующие объекты можно воспринимать непосредственно, видя их самих, а не только те действия, которые они оказывают на другие объекты. В отличие от непосредственных наблюдений косвенные наблюдения – это такие, когда сам объект исследования вообще не наблюдаем. Однако, несмотря на это в случае косвенного наблюдения все же можно видеть те действия, которые оказывает ненаблюдаемый объект на другие, наблюдаемые предметы. Необычное поведение или состояние наблюдаемых тел, которые нельзя объяснить, если предположить, что в действительности есть только непосредственно наблюдаемые тела и есть исходное условие для косвенного наблюдения. Анализируя особенности необычного поведения видимых объектов и сравнивая его со случаями обычного поведения этих объектов можно сделать определенные выводы о свойствах ненаблюдаемых объектов. Компонент необычности в поведении видимых тел и есть косвенное наблюдение того, что не наблюдаемо непосредственно. Примером косвенных наблюдений будет, допустим, ситуация, связанная с «броуновским движением», а также эмпирическая составляющая знаний о «черных дырах».

Броуновское движение – это постоянное движение мельчайших, но все же с помощью достаточного сильного микроскопа визуально наблюдаемых частиц какого-либо вещества в жидкости. В случае броуновского движения вполне естественен вопрос: какова причина наблюдаемого движения этих частиц? Отвечая на этот вопрос можно предположить, что есть и другие, невидимые частицы, которые сталкиваются с видимыми и тем самым толкают их. Как известно, причина броуновского движения в том, что визуально ненаблюдаемые с помощью оптического микроскопа объекты – атомы и молекулы – все время сталкиваются с наблюдаемыми частицами, заставляя их двигаться. Таким образом, хотя сами атомы и молекулы в оптическом диапазоне (видимый свет) вообще ненаблюдаемы, однако и до изобретения электронного микроскопа их отдельные свойства можно было наблюдать. Естественно, только косвенно.

Что касается «черных дыр», то их непосредственно наблюдать невозможно в принципе. Дело в том, что сила тяготения, которая действует в них, столь велика, что никакой предмет – в том числе, видимый свет – не может преодолеть притяжение этих объектов. Тем не менее, черные дыры можно наблюдать косвенно. В частности, в связи с характерным изменением картины звездного неба вблизи них (за счет искривления пространства гравитационными силами) или в том случае, когда черная дыра и самосветящийся объект (звезда) составляют единую систему, которая по законам механики вращается вокруг общего центра масс. В последнем случае необычное движение звезды по замкнутой траектории (ведь непосредственно наблюдаема только она) и будет случаем косвенного наблюдения черной дыры.

Интроспекция – это наблюдение человека за содержанием собственного сознания. В конце 40-х годов XX в. в США был проведено следующее исследование. Для того чтобы выяснить, возможно ли функционирование сознания в случае паралича тела, испытуемому ввели производное кураре, вещество которое парализует всю мускульную систему человека. Оказалось, что, несмотря на паралич мускулатуры (испытуемый был подключен к аппарату искусственного дыхания, так как самостоятельно дышать он не мог) способность к сознательной деятельности сохранилась. Испытуемый был в состоянии наблюдать за тем, что происходит вокруг него, понимал речь, запоминал события и размышлял о них. Из этого был сделан вывод, что психическая деятельность может осуществляться и при отсутствии какой-либо мышечной активности.

Данные, которые получены в результате наблюдения, могут претендовать на научный статус только в том случае, если будет признана их объективность. Существенным фактором этого является воспроизводимость однажды увиденного другими . Если, например, кто-либо заявит, что он наблюдает нечто, что другие в аналогичных условиях не наблюдают, то это будет достаточным основанием для того, чтобы не признать научный статус данного наблюдения. Если же некоторое «наблюдение» еще и противоречит известным и хорошо установленным закономерностям в области какой-либо сферы знания, то в этом случае со значительной долей уверенности можно сказать, что «наблюдаемого» факта в действительности вообще никогда и не существовало. Видимо, одним из самых широко известных случаев такого псевдонаблюдения можно считать историю с «Лох-Несским чудовищем».

Для придания наблюдению статуса научно значимого знания важным моментом является обоснование того, что наблюдаемый объект, те или иные его свойства существуют объективно , а не являются только результатом воздействия инструментария, который использует наблюдатель. Примером грубой ошибки можно считать случай, когда, допустим, камера фотографирует объект, который в действительности является не удаленным предметом экспонируемой панорамы, а артефактом, который случайно прилип к элементам оптической системы камеры (например, частичка пыли на объективе).

Проблема учета и минимизации влияния субъекта-исследователя на изучаемый объект характерна не только для естествознания, но также и для социальных наук. В частности, в рамках социологии существует понятие «включенного наблюдения », т.е. такого, когда исследователь, который собирает данные о некоторой социальной группе, при этом достаточно долгое время живет рядом или даже в составе этой группы. Последнее делается для того, чтобы те, кто является объектом наблюдения, привыкли к присутствию стороннего наблюдателя, не обращали на не него особого внимания и вели в его присутствии себя так, как они ведут обычно.

Эксперимент

Главное отличие эксперимента от наблюдения состоит в том, что это метод не пассивной регистрации данных, а такой способ познания действительности, где с целью исследования существующих связей и отношений целенаправленно организуется протекание соответствующих процессов и явлений . В ходе проведения эксперимента исследователь сознательно вмешивается в естественный ход событий для того, чтобы выявить хотя и существующую, но часто неочевидную взаимосвязь между изучаемыми явлениями. Эксперимент принято относить к эмпирическим методам познания потому, что здесь, как правило, предполагается манипулирование объективно существующими предметами и процессами материального мира, которые, естественно, можно наблюдать. Однако не в меньшей степени эксперимент связан и с определенными теоретическими представлениями. В основе любого эксперимента всегда лежит определенная гипотеза или теория, для подтверждения или опровержения которых и проводится соответствующий эксперимент.

Среди видов экспериментальных исследований можно выделить следующие:

С точки зрения цели проведения эксперименты также как и научные наблюдения можно разделить на проверочные и поисковые ;

В зависимости от объективных характеристик предметов, с помощью которых проводятся исследования, эксперименты можно разделить на прямые и модельные ;

Эксперимент называется прямым , когда объектом изучения является реально существующий предмет или процесс, и модельным , когда вместо самого предмета используется его, как правило, уменьшенная модель. Особой разновидностью модельных экспериментов является исследования математических моделей тех или иных предметов или процессов. Что касается «мысленных экспериментов » – т.е. таких, где реальное исследование вообще не проводится, а только воображается протекание некоторых процессов и явлений – то последние, строго говоря, не могут быть отнесены к области эмпирического познания, так как по своей сути они представляют разновидность теоретических исследований. Впрочем, во многих случаях на основании мысленного эксперимента может быть проведено и реальное опытное исследование, которое можно рассматривать как материализацию соответствующих теоретических представлений.

Для того чтобы понять роль эксперимента как метода научного познания необходимо себе представлять, что та действительность с которой имеет дело исследователь, изначально предстает перед ним не как строго и систематически организованная цепь отношений и причинно-следственных связей, а лишь как лишь более или менее упорядоченное целое, в рамках которого роль и влияние тех или иных факторов часто не вполне очевидна. Поэтому предварительным условием проведения эксперимента является формулировка гипотезы о том, как именно изучаемые факторы могут быть связаны между собой, а для того, чтобы эту предполагаемую взаимосвязь проверить, необходимо создать условия, чтобы исключить влияние других, относительно случайных и несущественных факторов , действие которых может скрывать или нарушать протекание исследуемых отношений. Например, на основе обыденного восприятия окружающего мира можно заметить, что более тяжелое тело падает на поверхность Земли быстрее, чем более легкое. Так происходит потому, что воздух атмосферы препятствует движению тел. Не зная этого, на основе одного только опыта обыденного наблюдения, предварительно обобщив его, можно прийти к «открытию» не существующей на самом деле зависимости: утверждению о том, скорость падения тела всегда зависит от их массы. В действительности такой связи как постоянной зависимости нет, так как массу Земли можно считать бесконечно большой величиной по сравнению с массой любого предмета, который мы в состоянии сбросить на нее. В силу этого скорость падения любого сбрасываемого тела зависит только от массы Земли. Но как это доказать? Галилей, с именем которого принято связывать начало применения эксперимента как метода научного познания, сделал это следующим образом. Он сбросил с высоты 60 м. (Пизанская башня) одновременно два предмета: мушкетную пулю (200 гр.) и пушечное ядро (80 кг.). Так как оба предмета упали на Землю одновременно, Галилей сделал вывод, что гипотеза о том, что скорость падения тела всегда связана с его массой, неверна.

Опыт Галилея – это пример прямого эксперимента с целью проверки (опровержения) неверной теории, согласно которой скорость падения всегда зависит от массы падающего тела. Несколько изменив исходные условия в опыте Галилея нетрудно организовать проведение такого эксперимента, результаты которого можно интерпретировать в качестве подтверждения теории тяготения. Например, если взять достаточно большую камеру, из которой предварительно был откачен весь воздух, и поместить туда неплотный комок ваты и свинцовый шарик, а затем заставить их падать внутри этой камеры, то в результате можно увидеть, что шарик и комок, имея существенно разные параметры массы, площади поверхности и плотности, тем не менее, в разряженной среде (в отсутствии воздуха) упадут одновременно. Этот факт и можно интерпретировать как подтверждение теории тяготения.

Следует заметить, что далеко не во всех случаях у ученых есть хорошее теоретическое обоснование для экспериментальных исследований. Особенность поисковых экспериментов связана с тем, что они проводятся, чтобы собрать необходимую эмпирическую информацию для построения или уточнения некоторого предположения или догадки . Наглядным примером такого типа исследований могут служить опыты Бенджамина Румфорда по изучению природы тепловых явлений. До создания молекулярно-кинетической теории теплоту считали своего рода материальной субстанцией. В частности, полагали, что нагревание тела связано с добавлением к нему этой субстанции, которую называли теплородом. Специалистам по обработке металла резанием во времена Румфорда было хорошо известно, что при сверлении металла образуется большое количество теплоты. Этот факт в рамках теории теплорода пытались объяснить тем, что при обработке металла теплород отделяется от него и переходит в металлическую стружку, которая образуется в результате сверления. Хотя такое объяснение и выглядит малоубедительным, однако ничего лучшего в тот период предложить не могли.

Румфорд естественно знал о факте сильного тепловыделения при сверлении, однако для того, чтобы его объяснить он проделал следующий эксперимент. Он взял специально затупленное сверло и с его помощью проделал отверстие. В результате выделилось еще больше тепла, чем при действии острым сверлом, но зато было просверлено гораздо меньшее отверстие и образовалось совсем немного опилок. На основании данного эксперимента был сделан вывод: увеличение тепла не связано с образованием опилок, в которые, как считалось, переходит субстанция теплорода. Причина тепла – это не высвобождение и переход особой материальной субстанции теплорода, а движение. Таким образом, эксперимент, проделанный Румфордом, способствовал пониманию того, что тепло – это характеристика определенного состояния вещества, а не что-то добавленное к нему.

Далеко не во всех случаях эксперимент является прямым взаимодействием с изучаемым объектом. Очень часто гораздо экономнее проводить исследование на уменьшенных моделях этих объектов . В частности, примерами таких исследований являются опыты по определению аэродинамических характеристик планера (корпуса) самолета или исследования величины сопротивления воды, которое существует при данных формах корпуса судна. Очевидно, что проведение таких исследований на моделях, соответственно, в аэродинамической трубе или в бассейне гораздо дешевле, чем эксперименты с реальными объектами. При этом, надо понимать, что уменьшенная модель – это не точная копия изучаемого объекта, так как физические эффекты, возникающие при обдуве или движений модели, не только количественно, но и качественно не тождественны тем, которые имеют место в случае полноразмерных объектов. Поэтому для того, чтобы полученные на модельных экспериментах данные могли быть использованы при проектировании полноразмерных объектов, они должны быть пересчитаны с учетом специальных коэффициентов.

В связи с распространением в настоящее время ЭВМ все более широкое распространение получают эксперименты с математическими моделями исследуемых объектов. Предпосылкой математического моделирования является квантификация каких-либо существенных свойств исследуемых объектов и тех закономерностей, которым подчиняются эти объекты. Исходные параметры математической модели – это свойства реально существующих объектов и систем, которые переведены в числовую форму. Процесс математического моделирования – это вычисление тех изменений, которые произойдут с моделью в случае изменения исходных параметров. В силу того, что таких параметров может быть очень много, для их расчета требуется большая затрата сил. Применение ЭВМ позволяет автоматизировать и существенно ускорить процесс соответствующих расчетов. Очевидными достоинствами математического моделирования является возможность получения (за счет обработки большого числа параметров) быстрого расчета возможных сценариев развития моделируемых процессов. Дополнительным эффектом такого вида моделирования является значительная экономия средств, а также минимизация других издержек. Например, проведение расчетов особенностей протекания ядерных реакций с помощью ЭВМ позволили отказаться от реальных испытаний ядерного оружия.

Наглядным и самым известным примером мысленного эксперимента является «корабль Галилея». Во времена Галилея полагали, что покой носит абсолютный характер, а движение – это лишь временный процесс перехода от одного состояния к другому под действием какой-либо силы. Стремясь опровергнуть это утверждение, Галилей представил себе следующее. Пусть человек, который находится в закрытом трюме равномерно движущегося корабля и поэтому ничего не знает о том, что происходит вне трюма, попытается ответить на вопрос: стоит ли корабль на месте или плывет? Размышляя над этим вопросом, Галилей пришел к выводу, что у находящегося в трюме при данных условиях нет никакого способа, для того чтобы узнать правильный ответ. А из этого следует, что равномерное движение неотличимо от покоя и, следовательно, нельзя утверждать, что покой – это естественное, как бы первичное, и поэтому соответствующее абсолютной системе отсчета состояние, а движение – это лишь момент покоя, нечто такое, что всегда сопровождается действием какой-либо силы.

Естественно, мысленный эксперимент Галилея нетрудно реализовать и в натурном исполнении.

Экспериментальные исследования могут проводиться не только в естественных, но и в социально-гуманитарных наука. . Например, в психологии, где на основе экспериментов получены данные, которые используются для обоснования предположений, которые, на первый взгляд, достаточно сложно верифицировать. В частности, до всяких специализированных исследований, на уровне обыденного восприятия взрослому человеку хорошо известно, что его психика отличается от психики ребенка.

Вопрос в том, насколько именно она отличается? Если, допустим, характеризуя уровень психического развития взрослого, используют такие понятия, как «личность» и «самосознание», то можно ли и в каком смысле использовать их для характеристики уровня психического развития ребенка? В каком возрасте, например, у человека уже есть самосознания, а когда его еще нет? На первый взгляд, здесь достаточно сложно сказать что-то определенное. Тем более что и сами эти понятия не являются такими, которые определены строго и однозначно.

Несмотря на эти трудности, психолог Жан Пиаже в своих работах достаточно убедительно показал, что маленький ребенок гораздо в меньшей степени способен к осознанному контролю собственных психических процессов, нежели взрослый. В результате ряда исследований Пиаже пришел к выводу, что дети в возрасте 7-8 лет практически не способны к интроспекции (без которой говорить о самосознании в том смысле, в каком им обладают взрослые люди, вряд ли возможно). Эта способность, по его мнению, постепенно формируется в возрастном промежутке между 7-8 и 11-12 годами. Такие выводы Пиаже сделал на основе ряда экспериментов, содержание которых сводилось к тому, что сначала детям предлагали несложную арифметическую задачу (с которой большинство детей может справиться), а затем просил их объяснить, как именно они пришли к соответствующему решению. По мнению Пиаже, наличие интроспективной способности можно признать существующей, если ребенок может провести ретроспекцию, т.е. способен правильно воспроизвести процесс собственного решения. Если он это сделать не может и пытается объяснить решение, отталкиваясь, например, от полученного результата, как если бы он знал его наперед, то это означает, что ребёнок не обладает интроспективной способностью в том смысле, как это присуще взрослым.

В рамках экономической науки тоже, вероятно, можно осмысленно говорить об экспериментальных исследованиях. В частности, если существует некоторая налоговая ставка, в соответствии с которой осуществляются платежи, но при этом часть налогоплательщиков стремиться занизить или скрыть свои доходы, то в рамках описываемой ситуации могут быть предприняты действия, которые можно назвать экспериментальными. Допустим, зная описываемое положение дел, соответствующие правительственные органы могут принять решение об уменьшении ставки налогового обложения, предполагая, что при новых условиях значительной части налогоплательщиков будет выгоднее платить налоги, нежели уклоняться от них, рискуя получить штрафы и другие санкции.

После введения новых ставок налогообложения необходимо сравнить уровень собираемых налогов с тем, который существовал при прежних ставках. Если окажется, что количество налогоплательщиков возросло, так как некоторые при новых условиях согласились выйти «из тени», и общее количество сборов тоже увеличилось, то полученная информация может быть использована для совершенствования работы налоговых органов. Если же окажется, что никаких изменений в поведении налогоплательщиков не произошло и общее количество собранных налогов упало, то эта информация также может быть использована в работе соответствующих органов, мотивируя их, естественно, к поиску каких-то других решений.

Измерение

Измерение – это нахождение отношение между некоторой величиной и другой, которая принята за единицу измерения . Результат измерения выражается, как правило, некоторым числом, благодаря чему становится возможным подвергнуть полученные результаты математической обработке. Измерение – это важный метод научного познания, так как посредством его можно получить точные количественные данные о величине и интенсивности и на основании этого даже иногда сделать предположения о природе соответствующих процессов или явлений.

Изменение как способ определения величины и интенсивности встречается уже на уровне обыденного восприятия мира. В частности, как субъективное переживание «равенства», «большей» или «меньшей» величины какого-либо явления или процесса по сравнению с другими случаями его проявления. Например, свет может восприниматься как более или менее яркий, а температура оцениваться по таким ощущениям, как «холодно», «очень холодно», «тепло», «жарко», «горячо» и т.п. Очевидным недостатком такого способа определения интенсивности является его субъективность и приблизительность . Впрочем, для уровня обыденного восприятия мира такой «шкалы» может быть достаточно, однако в рамках научного познания подобная приблизительность – это серьезная проблема. Причем настолько, что отсутствие способов и практики точных измерений может даже выступать в качестве одного из серьезных факторов, которые сдерживают научное и техническое развитие.

Понять значимость точных измерений можно, если, допустим, представить себе те задачи, которые должны решить конструкторы и технологи при создании сложного технического устройства (например, двигателя внутреннего сгорания). Для того, чтобы этот двигатель работал и при этом еще имел достаточно высокий КПД, необходимо, чтобы его детали – в частности, поршни и цилиндры – были сделаны с высокой точностью. Причем настолько, что зазор между стенками цилиндра и диаметром поршня должен быть в пределах только десятых долей миллиметра. В свою очередь, для того, чтобы изготовить эти детали двигателя, нужны станки, которые способны обрабатывать металл с такой высокой точностью. Если такой или приближающейся к ней точности при данном техническом оснащении достигнуть нельзя, то двигатель либо вообще не будет работать, либо его КПД будет столь низким, что его использование будет экономически нецелесообразно. То же самое можно сказать и в отношении любых других сколько-нибудь сложных технических устройств.

Квантификация отношений между теми или иными явлениями, которая достигается за счет их выражения в точной количественной форме (последнее находит свое проявление в строгой формулировке соответствующих законов природы посредством использования математических формул) – это не просто своеобразная форма записи данных, а особый способ выражения знания, имеющий при этом совершенно определенное эвристическое значение . В частности, выражение в такой форме широко известного закона всемирного тяготения, согласно которому между любыми двумя телами действует сила притяжения, пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, ценно не просто как «точное знание», которое может быть представлено в виде компактной формулы . Эвристическая ценность этой и других формул состоит в том, что используя такую форму представления знаний, можно выполнить точный расчет для конкретной ситуации, подставив в формулу определенные значения. На основании соответствующих расчетов можно создать, допустим, самолет или ракету, которые смогут подняться в воздух и не упасть, вылететь за пределы земного притяжения и достигнуть запланированной цели.

Что касается конкретных объектов изменения , то для естественных наук огромное значение имеет умение, прежде всего, определить численные характеристики пространства и времени : величину, расстояние между объектами и длительность соответствующих процессов.

Измерить расстояние между двумя объектами – значит сравнить его с эталоном . До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава , форма которого слабо изменялось при изменении внешних условий. В качестве единицы длины был выбран метр – отрезок, сравнимый с размерами человеческого тела. В большинстве случаев этот эталон не укладывается целое число раз на длине измеряемого отрезка. Поэтому оставшаяся длина измеряется при помощи 1/10, 1/100, 1/1000 и т.д. частей эталона. На практике многократное деление исходного эталона невозможно. Поэтому для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого в настоящее время используются стоячие электромагнитные волны оптического диапазона .

В природе существуют объекты, значительно меньшие по размерам длин волн оптического диапазона – это многие молекулы, атомы, элементарные частицы. При их измерении возникает принципиальная проблема: объекты, размеры которых меньше длины волны видимого излучения, перестают отражать свет по законам геометрической оптики и, следовательно, перестают восприниматься в форме привычных зрительных образов. Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц . В этом случае величина объектов оценивается по так называемым сечениям рассеяния, определяемым отношением числа частиц, изменивших направление своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы: 10 -15 м. Говорить о меньших размерах бессмысленно.

При измерении расстояний, значительно превышающих 1 м, пользоваться соответствующим эталоном длины тоже оказывается неудобным. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции и радиолокации . Метод триангуляции состоит в том, что, зная величины одной стороны треугольника и двух прилегающих к ней углов, можно рассчитать величины двух других сторон. Суть метода радиолокации состоит в измерении времени задержки отраженного сигнала, скорость распространения и время отправления которого известны. Однако для очень больших расстояний, например, для измерения расстояний до других галактик, указанные методы оказываются неприменимыми, так как отраженный сигнал оказывается слишком слабым, а углы, под которыми виден объект, оказываются практически неизмеримыми. На очень больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и их скопления). Расстояние до них оценивается исходя из наблюдаемой яркости. В настоящее время наблюдаемая часть Вселенной имеет размеры 10 24 м. Говорить о больших размерностях не имеет смысла.

Измерение длительности процесса означает сравнение его с эталоном . В качестве такого эталона удобно выбрать какой-либо периодически повторяющийся процесс а, например колебания маятника . За единицу измерения времени выбрали секунду – интервал, примерно равный периоду сокращения сердечной мышцы человека. Для измерения значительно более коротких периодов времени возникла необходимость в новых эталонах. В их роли выступали колебания кристаллической решетки и движение электронов в атоме . Еще меньшие периоды времени можно измерить, если сравнивать их со временем прохождения света через заданный промежуток. Поэтому наименьшим осмысленным интервалом времени является время прохождения света через минимально возможное расстояние.

При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1 секунду, но и здесь возможности метода не беспредельны. Периоды времени, сравниваемые с возрастом Земли (10 17 сек.) обычно оцениваются по полураспаду атомов радиоактивных элементов. По современным представлениям, максимальный промежуток времени, о котором имеет смысл говорить, является возраст Вселенной, который оценивается периодом 10 18 сек. (для сравнения: человеческая жизнь длится около 10 9 сек.).

Описанные способы изменений пространства и времени и та точность, которая в этом достигнута, имеют большое теоретическое и практическое значение. В частности, экстраполяция назад во времени наблюдаемого и точно измеренного расширения Вселенной является одним из важных фактов, который приводят в пользу теории Большого взрыва. Благодаря возможности точных измерений получены данные о перемещении материков Земли относительно друга друга на величину примерно равную нескольким сантиметрам в год, что имеет важное значение для геологии.

Умение провести точное изменение имеет большое значение. Данные, которые могут быть получены в результате такого изменения, часто выступают в качестве существенного аргумента в пользу принятия или отклонения какой-либо гипотезы . Например, измерение О. Рёмером в XVII в. скорости света было важным аргументом в пользу признания того, что последний является естественным физическим процессом, а не чем-то иным, нематериальным, скорость чего «бесконечна», как думали в те и последующие времена многие. Способность точно измерить период прохождения светового луча в разные стороны с помощью специально сконструированного прибора (опыт Майкельсона – Морли в 1880 г.) была важным фактором, который во многом способствовал отказу от теории эфира в физике.

Измерение как метод научного познания имеет огромное значение не только для естественных и технических наук, но значим также и для сферы социально-гуманитарного познания . Исходя из собственного опыта все знают, что осмысленный материал запоминается быстрее, чем бессмысленный. Однако насколько? Психолог Герман Эббингауз установил, что осмысленный материал запоминается в 9 раз быстрее, чем бессмысленный. В настоящее время в рамках прикладной психологии измерения широко используются для оценки психических способностей человека.

Социолог Эмиль Дюркгейм на основе анализа статистических данных о числе самоубийств в различных странах Европы установил корреляцию между этим фактом и степенью интеграции между людьми в соответствующих социальных группах. Знание численности населения некоторой страны, динамика смертности и рождаемости – это важные статистические данные для целого ряда прикладных наук об обществе.

Велика роль измерений и статистических данных и для современной экономической науки, особенно в связи с широким использованием в ней математических методов. Например, численный учет спроса и предложения имеет важное значение в сфере маркетинговых исследований.

Такие эмпирические методы познания, как наблюдение, эксперимент и измерения играют огромную роль в современном научном познании и их использование неотделимо от соответствующих теоретических научных представлений. Именно это отличает их от обыденных эмпирических способов познания мира. Эмпирические методы значимы на всех этапах научного познания мира, так как получаемый посредством них материал используется как для подтверждения и опровержения соответствующих теоретических представлений, так и учитывается при их формулировке.

Одна из существенных особенностей, которая связана с современным этапом развития научных эмпирических методов познания, состоит в том, что для получения и проверки соответствующих результатов требуется чрезвычайно сложное и дорогостоящее оборудование . Видимо, можно сказать, что дальнейшее развитие естественных и технических наук во много определяется возможностью и способностью создавать это оборудование . Например, современные исследования в области фундаментальной физики столь дороги, что проводить их способны только некоторые страны, которые имеют специалистов соответствующего уровня и средства для того, чтобы, в частности, участвовать строительстве и эксплуатации такого сложного прибора для экспериментальных исследований, каким является недавно вступивший в строй большой адронный коллайдер.

В познании различают два уровня: эмпирический и теоретический.

Эмпирический (от гр. Еmреиrиа - опыт) уровень знания - это знание, полученное непосредственно из опыта с некоторой рациональной обработкой свойств и отношений объекта познается. Он всегда является основой, базой для теоретического уровня знания.

Теоретический уровень - это знание, полученное путем абстрактного мышления.

Человек начинает процесс познания объекта с внешней его описания, фиксирует отдельные его свойства, стороны. Затем углубляется в содержание объекта, раскрывает законы, которым он подвергается, переходит к объяснению свойств объекта, объединяет знания об отдельных сторонах предмета в единую, целостную систему, а полученное при этом глубокое разностороннее конкретное знание о предмете и является теорией, что имеет определенную внутреннюю логическую структуру.

Следует отличать понятие "чувственное" и "рациональное" от понятий "эмпирическое" и "теоретическое". "Чувственное" и "рациональное" характеризует диалектику процесса отражения вообще, а "эмпирическое" и "теоретическое" относятся к сфере только научного познания.

Эмпирическое познание формируется в процессе взаимодействия с объектом исследования, когда мы непосредственно влияем на него, взаимодействуем с ним, обрабатываем результаты и делаем вывод. Но получение отдельных эмпирических фактов и законов еще не позволяет построить систему законов. Для того чтобы познать сущность, необходимо обязательно перейти к теоретическому уровню научного познания.

Эмпирический и теоретический уровни познания всегда неразрывно связаны между собой и взаимообуславливают друг друга. Так, эмпирическое исследование, выявляя новые факты, новые данные наблюдения и экспериментов, стимулирует развитие теоретического уровня, ставит перед ним новые проблемы и задачи. В свою очередь, теоретическое исследование, рассматривая и конкретизируя теоретическое содержание науки, открывает новые перспективы объяснения и предсказания фактов и этим ориентирует и направляет эмпирическое знание. Эмпирическое знание опосредуется теоретическим - теоретическое познание указывает, какие именно явления и события должны быть объектом эмпирического исследования и в каких условиях должен осуществляться эксперимент. Теоретически также оказываются и указываются те пределы, в которых результаты на эмпирическом уровне истинные, в которых эмпирическое знание может быть использовано на практике. Именно в этом и состоит эвристическая функция теоретического уровня научного познания.

Граница между эмпирическим и теоретическим уровнями достаточно условна, самостоятельность их друг относительно друга относительная. Эмпирическое переходит в теоретическое, а то, что когда-то было теоретическим, на другом, более высоком этапе развития, становится эмпирически доступным. В любой сфере научного познания, на всех уровнях наблюдается диалектическое единство теоретического и эмпирического. Ведущая роль в этом единстве зависимости от предмета, условий и уже имеющихся, полученных научных результатов принадлежит то эмпирическом, то теоретическом. Основой единства эмпирического и теоретического уровней научного познания выступает единство научной теории и научно-исследовательской практики.

Основные методы научного познания

На каждом из уровней научного познания применяются свои методы. Так, на эмпирическом уровне используются такие основные методы, как наблюдение, эксперимент, описание, измерение, моделирование. Теоретически - анализ, синтез, абстрагирование, обобщение, индукция, дедукция, идеализация, исторический и логический методы и тому подобное.

Наблюдение - это планомерное и целенаправленное восприятие предметов и явлений, их свойств и связей в природных условиях или в условиях эксперимента с целью познания исследуемого объекта.

Основные функции наблюдения таковы:

Фиксация и регистрация фактов;

Предварительная классификация фактов, уже зафиксированных на основе определенных принципов, сформулированных на основе существующих теорий;

Сравнения зафиксированных фактов.

С усложнением научного познания все больший вес приобретают цель, план, теоретические установки, осмысление результатов. Вследствие этого возрастает роль теоретического мышления в наблюдении.

Особенно сложным является наблюдение в общественных науках, где его результаты во многом зависят от мировоззренчески-методологических установок наблюдателя, его отношение к объекту.

Метод наблюдения ограничен методом, так как с его помощью можно лишь зафиксировать определенные свойства и связи объекта, но невозможно раскрыть их сущность, природу, тенденции развития. Всестороннее наблюдение объекта является основой для эксперимента.

Эксперимент - это исследование каких-либо явлений путем активного воздействия на них с помощью создания новых условий, соответствующих целям исследования, или путем изменения прохождения процесса в определенном направлении.

В отличие от простого наблюдения, которое не предусматривает активного воздействия на объект, эксперимент - это активное вторжение исследователя в природные явления, в ходе процессов, которые изучаются. Эксперимент - это такой вид практики, в котором практическое действие органично сочетается с теоретической работой мысли.

Значение эксперимента заключается не только в том, что с его помощью наука объясняет явления материального мира, но и в том, что наука, опираясь на опыт, непосредственно овладевает теми или иными изучаемыми явлениями. Поэтому эксперимент служит одним из главных средств связи науки с производством. Ведь он позволяет осуществить проверку правильности научных выводов и открытий, новых закономерностей. Эксперимент служит средством исследования и изобретения новых приборов, машин, материалов и процессов в промышленном производстве, необходимым этапом практического испытания новых научно-технических открытий.

Эксперимент широко применяется не только в естественных науках, но и в социальной практике, где он играет важную роль в познании и управлении общественными процессами.

Эксперимент имеет свои специфические особенности по сравнению с другими методами:

Эксперимент дает возможность исследовать объекты в так называемом чистом виде;

Эксперимент позволяет исследовать свойства объектов в экстремальных условиях, что способствует более глубокому проникновению в их сущность;

Важным преимуществом эксперимента является его повторяемость, благодаря чему в научном познании этот метод приобретает особое значение и ценность.

Описание - это указание признаков предмета или явления как существенных, так и несущественных. Описание, как правило, применяется в отношении единичных, индивидуальных объектов для более полного ознакомления с ними. Его целью является дать наиболее полные сведения об объекте.

Измерение - это определенная система фиксации и регистрации количественных характеристик исследуемого объекта с помощью различных измерительных приборов и аппаратов. С помощью измерения определяется отношение одной количественной характеристики объекта к другому, однородной с ней, принятой за единицу измерения. Основными функциями метода измерения является, во-первых, фиксация количественных характеристик объекта; во-вторых, классификация и сравнение результатов измерения.

Моделирование - это изучение объекта (оригинала) путем создания и исследования его копии (модели), которая по своим свойствам определенной степени воспроизводит свойства исследуемого объекта.

Моделирование используется тогда, когда непосредственное изучение объектов по некоторым причинам невозможно, затруднено или нецелесообразно. Различают два основных вида моделирования: физическое и математическое. На современном этапе развития научного познания особенно большая роль отводится компьютерному моделированию. Компьютер, который функционирует по специальной программе, способен моделировать самые реальные процессы: колебания рыночных цен, орбиты космических кораблей, демографические процессы, другие количественные параметры развития природы, общества, отдельного человека.

Методы теоретического уровня познания.

Анализ - это расчленение предмета на его составные части (стороны, признаки, свойства, отношения) с целью их всестороннего изучения.

Синтез - это объединение ранее выделенных частей (сторон, признаков, свойств, отношений) предмета в единое целое.

Анализ и синтез диалектически противоречивые и взаимообусловлены методы познания. Познание предмета в его конкретной целостности предполагает предварительное расчленения его на составляющие и рассмотрение каждой из них. Эту задачу выполняет анализ. Он дает возможность выделить существенное, то, что составляет основу связи всех сторон изучаемого объекта. То есть, диалектический анализ является средством проникновения в сущность вещей. Но, играя важную роль в познании, анализ не дает знания конкретного, знание объекта как единства многообразного, единства различных определений. Эту задачу выполняет синтез. Итак, анализ и синтез органично взаимосвязаны и взаимообуславливают друг друга на каждом этапе процесса теоретического познания.

Абстрагирования - это метод отвлечения от некоторых свойств и отношений объекта и одновременно сосредоточение основного внимания на тех, которые являются непосредственным предметом научного исследования. Абстрагирования способствует проникновению познания в сущность явлений, движения познания от явления к сущности. Понятно, что абстрагирование расчленяет, огрубляет, схематизирует целостную подвижную действительность. Однако именно это и позволяет более глубоко изучить отдельные стороны предмета "в чистом виде". А значит, и проникнуть в их сущность.

Обобщение - это метод научного познания, который фиксирует общие признаки и свойства определенной группы объектов, осуществляет переход от единичного к особому и общему, от менее общего к более общему.

В процессе познания нередко приходится, опираясь на уже существующие знания, делать выводы, которые являются новым знанием о неизвестном. Это осуществляется с помощью таких методов, как индукция и дедукция.

Индукция - это такой метод научного познания, когда на основании знания об отдельном делается вывод об общем. Это способ рассуждения, с помощью которого устанавливается обоснованность выдвинутого предположения или гипотезы. В реальном познании индукция всегда выступает в единстве с дедукцией, органически связана с ней.

Дедукция - это метод познания, когда на основе общего принципа логическим путем из одних положений как истинных с необходимостью выводится новое истинное знание об отдельном. С помощью этого метода отдельное познается на основе знания общих закономерностей.

Идеализация - это способ логического моделирования благодаря которому создаются идеализированные объекты. Идеализация направлена на процессы мыслимой построения возможных объектов. Результаты идеализации - не произвольны. В предельном случае они соответствуют отдельным реальным свойствам объектов или допускают интерпретацию их, исходя из данных эмпирического уровня научного познания. Идеализация связана с "мысленным экспериментом", в результате которого с гипотетического минимума некоторых признаков поведения объектов открываются или обобщаются законы их функционирования. Границы эффективности идеализации определяются практикой.

Исторический и логический методы органически связаны. Исторический метод предполагает рассмотрение объективного процесса развития объекта, реальной его истории со всеми ее поворотами, особенностями. Это определенный способ воспроизведения в мышлении исторического процесса в его хронологической последовательности и конкретности.

Логический метод - это способ, с помощью которого мысленно воспроизводит реальный исторический процесс в его теоретической форме, в системе понятий.

Задачей исторического исследования является раскрытие конкретных условий развития тех или иных явлений. Задачей логического исследования является раскрытие роли, которую отдельные элементы системы играют в составе развития целого.

В структуре научного знания выделяются два уровня:

Эмпирический уровень;

Теоретический уровень.

Для знаний, полученных на эмпирическом уровне , характерно то, что они являются результатом непосредственного контакта с реальностью в наблюдении или эксперименте.

Теоретический уровень представляет собой как бы разрез исследуемого объекта под определенным углом зрения, заданным мировоззрением исследователя. Он строится с явной направленностью на объяснение объективной реальности и его главной задачей является описание, систематизация и объяснение всего множества данных эмпирического уровня.

Эмпирический и теоретический уровни обладают определенной автономией, однако их невозможно оторвать (отделить) один от другого.

Теоретический уровень отличается от эмпирического тем, что на нем происходит научное объяснение фактов, полученных на эмпирическом уровне. На этом уровне формируются конкретные научные теории, и он характеризуется тем, что в нем оперируют с интеллектуально контролируемым объектом познания, в то время как на эмпирическом уровне - с реальным объектом. Значение его в том, что он может развиваться как бы сам по себе, без прямого контакта с действительностью.

Эмпирический и теоретический уровни органически связаны между собой. Теоретический уровень существует не сам по себе, а опирается на данные эмпирического уровня.

Несмотря на теоретическую загруженность, эмпирический уровень является более устойчивым, чем теория, в силу того, что теории, с которыми связано истолкование эмпирических данных, являются теориями другого уровня. Поэтому эмпирия (практика) является критерием истинности теории.

Для эмпирического уровня познания характерно использование следующих методов изучения объектов.

Наблюдение - система фиксации и регистрации свойств и связей изучаемого объекта. Функции этого метода: фиксации регистрация информации и предварительная классификация факторов.

Эксперимент - это система познавательных операций, которая осуществляется в отношении объектов, поставленных в такие условия (специально создаваемые), которые должны способствовать обнаружению, сравнению, измерению объективных свойств, связей, отношений.

Измерение как метод является системой фиксации и регистрации количественных характеристик измеряемого объекта. Для экономических и социальных систем процедуры измерения связаны с показателями: статистическими, отчетными, плановыми;

Сущность описания , как специфического метода получения эмпирического знания состоит в систематизации данных, полученных в результате наблюдения, эксперимента, измерения. Данные выражаются на языке определенной науки в форме таблиц, схем, графиков и других обозначений. Благодаря систематизации фактов, обобщающих отдельные стороны явлений, изучаемый объект отражается в целом.


Теоретический уровень является высшим уровнем научного познания.

Схему теоретического уровня познания можно представить следующим образом:

Мысленный эксперимент и идеализация на основе механизма переноса зафиксированных в объекте результатов практических действий;

Развитие познания в логических формах: понятиях, суждениях, умозаключениях, законах, научных идеях, гипотезах, теориях;

Логическая проверка обоснованности теоретических построений;

Применение теоретических знаний на практике, в общественной деятельности.

Можно определить основные характеристики теоретического познания :

Объект познания определяется целенаправленно под воздействием внутренней логики развития науки или насущных требований практики;

Предмет познания идеализирован на основе мысленного эксперимента и конструирования;

Познание осуществляется в логических формах, под которым понимается способ связи элементов, входящих в содержание мысли о предметном мире.

Различают следующие виды форм научного познания :

Общелогические: понятия, суждения, умозаключения;

Локально-логические: научные идеи, гипотезы, теории, законы.

Понятие - это мысль, отражающая имущественные и необходимые признаки предмета или явления. Понятия бывают: общими, единичными, конкретными, абстрактными, относительными, абсолютными и. др. Общие понятия связаны с некоторым множество предметов или явлений, единичные относятся только к одному, конкретные - к конкретным предметам или явлениям, абстрактные к отдельно взятым их признакам, относительные понятия всегда представляются попарно, а абсолютные - не содержат парных отношений.

Суждение - это мысль, в которой содержится утверждение или отрицание чего-либо посредством связи понятий. Суждения бывают утвердительными и отрицательными, общими и частными, условными и разделительными и т.д.

Умозаключение - это процесс мышления, соединяющий последовательность двух или более суждений, в результате чего появляется новое суждение. По существу, умозаключение является выводом, который делает возможным переход от мышления к практическим действиям. Умозаключения бывают двух видов: непосредственное; опосредованное.

В непосредственных умозаключениях приходят от одного суждения к другому, а в опосредованных переход от одного суждения к другому осуществляется посредством третьего.

Процесс познания идет от научной идеи к гипотезе, превращаясь впоследствии в закон или теорию.

Рассмотрим основные элементы теоретического уровня познания.

Идея - интуитивное объяснение явления без промежуточной аргументации и осознания всей совокупности связей. Идея вскрывает ранее не замеченные закономерности явления, основываясь на уже имеющихся о нем знаниях.

Гипотеза - предположение о причине, которая вызывает данное следствие. В основе гипотезы всегда лежит предположение, достоверность которого на определенном уровне науки и техники не может быть подтверждена.

Если гипотеза согласуется с наблюдаемыми фактами, то ее называют законом или теорией.

Закон - необходимые, устойчивые, повторяющиеся отношения между явлениями в природе и обществе. Законы бывают специфическими, общими и всеобщими.

Закон отражает общие связи и отношения, присущие всем явлениям данного рода, класса.

Теория - форма научного знания, дающая целостное представление о закономерностях и существенных связях действительности. Она возникает в результате обобщения познавательной деятельности и практики и представляет собой мысленное отражение и воспроизведение реальной действительности. Теория обладает рядом структурных элементов:

Факты - знание об объекте или явлении, достоверность которого доказана.

Аксиомы - положения, принимаемые без логического доказательства.

Постулаты - утверждения, принимаемые в рамках какой-либо научной теории за истинное, играющее роль аксиомы.

Принципы - основные исходные положения какой-либо теории, учения, науки или мировоззрения.

Понятия - мысли, в которых обобщаются и выделяются предметы некоторого класса по определенным общим (специфическим) признакам.

Положения - сформулированные мысли, высказанные в форме научного утверждения.

Суждения - мысли, выраженные в виде повествовательного предложения, которые могут быть истинными или ложными.

Научное познание можно разделить на два уровня: теоретический и эмпирический. Первый основывается на умозаключениях, второй - на опытах и взаимодействии с исследуемым объектом. Несмотря на различную природу, эти методы обладают одинаково большим значением для развития науки.

Эмпирические исследования

В основе эмпирического познания лежит непосредственное практическое взаимодействие исследователя и изучаемого им объекта. Оно состоит из экспериментов и наблюдений. Эмпирическое и теоретическое познание противоположны - в случае с теоретическими исследованиями человек обходится лишь собственными представлениями о предмете. Как правило, такой способ является уделом гуманитарных наук.

Эмпирические же исследования не могут обойтись без приборов и приборных установок. Это средства, связанные с организацией наблюдений и экспериментов, но помимо них есть еще и понятийные средства. Их используют в качестве специального научного языка. Он обладает сложной организацией. Эмпирическое и теоретическое познание ориентированы на исследование явлений и возникающих между ними зависимостей. Проводя эксперименты, человек может выявить объективный закон. Этому также способствует изучение явлений и их корреляции.

Эмпирические методы познания

Согласно научному представлению эмпирическое и теоретическое познание состоит из нескольких методов. Это совокупность шагов, необходимых для решения определенной задачи (в данном случае речь идет о выявлении неизвестных прежде закономерностей). Первый эмпирический метод — это наблюдение. Оно представляет собой целенаправленное исследование предметов, которое в первую очередь опирается на различные органы чувств (восприятия, ощущения, представления).

На своем начальном этапе наблюдение дает представление о внешних характеристиках объекта познания. Однако конечная цель этого заключается в определении более глубоких и внутренних свойств предмета. Распространенное заблуждение заключается в идее о том, что научное наблюдение представляет собой пассивное далеко не так.

Наблюдение

Эмпирическое наблюдение отличается детальным характером. Оно может быть как непосредственным, так и опосредованным разными техническими устройствами и приборами (например, фотокамерой, телескопом, микроскопом и т. д.). По мере развития науки наблюдение становится все более комплексным и сложным. У этого метода есть несколько исключительных качеств: объективность, определенность и однозначность замысла. При использовании приборов дополнительную роль играет расшифровка их показаний.

В социальных и гуманитарных науках эмпирическое и теоретическое познание приживается неоднородно. Наблюдение в этих дисциплинах отличается особенной сложностью. Оно становится зависимым от личности исследователя, его принципов и жизненных установок, а также степени заинтересованности в предмете.

Наблюдение не может осуществляться без определенной концепции или идеи. Оно должно основываться на некой гипотезе и регистрировать определенные факты (при этом показательными будут только связанные между собой и репрезентативные факты).

Теоретические и эмпирические исследования отличаются друг от друга в деталях. Например, у наблюдения есть свои конкретные функции, которые не характерны для других методов познания. В первую очередь это обеспечение человека информацией, без которой невозможно дальнейшее исследование и выдвижение гипотез. Наблюдение - это топливо, на котором работает мышление. Без новых фактов и впечатлений не будет и новых знаний. Кроме того, именно с помощью наблюдения можно сопоставить и проверить истинность результатов предварительных теоретических исследований.

Эксперимент

Разные между собой теоретические и эмпирические методы познания отличаются еще и степенью своего вмешательства в изучаемый процесс. Человек может наблюдать за ним строго со стороны, а может проанализировать его свойства на собственном опыте. Эту функцию осуществляет один из эмпирических методов познания - эксперимент. По важности и вкладу в итоговый результат исследований он ничуть не уступает наблюдению.

Эксперимент — это не только целенаправленное и активное вмешательство человека в протекание исследуемого процесса, но и его изменение, а также воспроизведение в специально подготовленных условиях. Данный метод познания требует гораздо больше усилий, чем наблюдение. Во время эксперимента объект изучения изолируется от любого постороннего влияния. Создается чистая и незамутненная среда. Условия эксперимента полностью задаются и контролируются. Поэтому этот метод, с одной стороны, соответствует естественным законам природы, а с другой стороны, отличается искусственной, определенной человеком сущностью.

Структура эксперимента

Все теоретические и эмпирические методы имеют определенную идейную нагрузку. Не является исключением и эксперимент, который осуществляется в несколько стадий. В первую очередь происходят планирование и пошаговое построение (определяются цель, средства, тип и т. д.). Затем наступает этап осуществления эксперимента. При этом он происходит под совершенным контролем человека. По завершении активной фазы наступает очередь интерпретации результатов.

И эмпирическое, и теоретическое познание отличается определенной структурой. Для того чтобы состоялся эксперимент, требуются сами экспериментаторы, объект эксперимента, приборы и другое необходимое оборудование, методика и гипотеза, которая подтверждается или опровергается.

Приборы и установки

С каждым годом научные исследования становятся все сложнее. Им требуется все более современная техника, которая позволяет изучать то, что недоступно простым человеческим органам чувств. Если раньше ученые ограничивались собственным зрением и слухом, то теперь в их распоряжении есть невиданные прежде экспериментальные установки.

В ходе использования прибора он может оказать негативное воздействие на изучаемый объект. По этой причине результат эксперимента иногда расходится с его первоначальными целями. Некоторые исследователи пытаются нарочно достичь таких результатов. В науке подобный процесс называется рандомизацией. Если эксперимент принимает случайный характер, то его последствия становятся дополнительным объектом анализа. Возможность рандомизации — это еще одна черта, которой отличается эмпирическое и теоретическое познание.

Сравнение, описание и измерение

Сравнение - третий эмпирический метод познания. Эта операция позволяет выявлять различия и сходства объектов. Эмпирический, теоретический анализ не может осуществляться без глубоких знаний о предмете. В свою очередь, многие факты начинают играть новыми красками, после того как исследователь сопоставляет их с другой известной ему фактурой. Сравнение объектов проводится в рамках признаков, существенных для конкретного эксперимента. При этом предметы, которые сопоставляются по одной черте, могут быть несравнимыми по другим своим характеристикам. Данный эмпирический прием основывается на аналогии. Он лежит в основе важного для науки

Методы эмпирического и теоретического познания могут комбинироваться между собой. Но почти никогда исследование не обходится без описания. Эта познавательная операция фиксирует результаты ранее проведенного опыта. Для описания используются научные системы обозначения: графики, схемы, рисунки, диаграммы, таблицы и т. д.

Последний эмпирический метод познания - измерение. Оно осуществляется посредством специальных средств. Измерение необходимо для определения числового значения искомой измеряемой величины. Такая операция обязательно проводится согласно принятым в науке строгим алгоритмам и правилам.

Теоретическое познание

В науке теоретическое и эмпирическое знание имеет разные фундаментальные опоры. В первом случае это отстраненное использование рациональных методов и логических процедур, а во втором - прямое взаимодействие с объектом. Теоретическое познание использует интеллектуальные абстракции. Одним из важнейших его методов является формализация - отображение знания в символическом и знаковом виде.

На первом этапе выражения мышления используется привычный человеческий язык. Он отличается сложностью и постоянной изменчивостью, из-за чего не может быть универсальным научным инструментом. Следующая ступень формализации связана с созданием формализованных (искусственных) языков. У них есть конкретное предназначение - строгое и точное выражение знания, которого нельзя достичь с помощью естественной речи. Такая система символов может принимать формат формул. Он очень популярен в математике и других где нельзя обойтись без цифр.

С помощью символики человек исключает неоднозначное понимание записи, делает ее короче и яснее для дальнейшего использования. Без быстроты и простоты в применении своих инструментов не может обойтись ни одно исследование, а значит, и все научное познание. Эмпирическое и теоретическое изучение одинаково нуждается в формализации, но именно на теоретическом уровне она принимает исключительно важное и фундаментальное значение.

Искусственный язык, созданный в узких научных рамках, становится универсальным средством обмена мыслей и коммуникации специалистов. В этом заключается принципиальная задача методологии и логики. Эти науки необходимы для передачи информации в понятном, систематизированном виде, избавленном от недостатков естественного языка.

Значение формализации

Формализация позволяет уточнять, анализировать, разъяснять и определять понятия. Эмпирический и теоретический уровни познания не могут обойтись без них, поэтому система искусственных символов всегда играла и будет играть большую роль в науке. Обыденные и выражаемые в разговорном языке понятия кажутся очевидными и ясными. Однако в силу своей неоднозначности и неопределенности они не подходят для научных исследований.

Особенно важна формализация при анализе предполагаемых доказательств. Последовательность формул, основанных на специализированных правилах, отличается необходимой для науки точностью и строгостью. Кроме того, формализация необходима для программирования, алгоритмизации и компьютеризации знаний.

Аксиоматический метод

Еще один метод теоретического исследования - аксиоматический метод. Он является удобным способом дедуктивного выражения научных гипотез. Теоретические и эмпирические науки невозможно представить без терминов. Очень часто они возникают благодаря построению аксиом. Например, в эвклидовой геометрии в свое время были сформулированы основополагающие термины угла, прямой, точки, плоскости и т. д.

В рамках теоретического познания ученые формулируют аксиомы - постулаты, которые не требуют доказательства и являются исходными утверждениями для дальнейшего построения теорий. Примером такого положения может послужить идея о том, что целое всегда больше части. С помощью аксиом строится система вывода новых терминов. Следуя правилам теоретического познания, ученый может из ограниченного числа постулатов получить уникальные теоремы. В то же время намного эффективнее применяется для преподавания и классификации, чем для открытия новых закономерностей.

Гипотетико-дедуктивный метод

Хотя теоретические, эмпирические научные методы отличаются друг от друга, они часто используются совместно. Примером такого применения является С помощью него строятся новые системы тесно переплетенных гипотез. Ни их основе выводятся новые утверждения, касающиеся эмпирических, экспериментально доказанных фактов. Метод выведения заключения из архаичных гипотез называется дедукцией. Этот термин многим знаком благодаря романам о Шерлоке Холмсе. Действительно, популярный литературный персонаж в своих расследованиях часто пользуется дедуктивным методом, с помощью которого из множества разрозненных фактов строит стройную картину преступления.

В науке действует такая же система. У подобного способа теоретического познания есть своя четкая структура. В первую очередь происходит ознакомление с фактурой. Затем выдвигаются предположения о закономерностях и причинах изучаемого явления. Для этого используются всевозможные логические приемы. Догадки оцениваются согласно своей вероятности (из этого вороха выбирается наиболее вероятная). Все гипотезы проверяются на непротиворечивость логике и совместимость с основными научными принципами (например, законами физиками). Из предположения выводятся следствия, которые затем проверяются путем эксперимента. Гипотетико-дедуктивный метод - это не столько способ нового открытия, сколько метод обоснования научных знаний. Этим теоретическим инструментом пользовались такие великие умы, как Ньютон и Галилей.

В структуре научного познания выделяются два уровня: эмпириче­ский и теоретический. Эти два уровня следует отличать от двух ступеней познавательного процесса в целом – чувственной и рациональной. Чувст­венное познание близко, но не тождественно эмпирическому, рациональ­ное отличается от теоретического.

Чувственное и рациональное – формы человеческого познания вооб­ще, как научного, так и обыденного; эмпирическое и теоретическое знание характерно именно для науки. Эмпирическое знание не сводится к чувст­венному, оно включает моменты осмысления, понимания, интерпретации данных наблюдения и формирования особого типа знания – научного фак­та. Последний представляет собой взаимодействие чувственного и рацио­нального знания.

В теоретическом знании доминируют формы рационального познания (понятия, суждения, умозаключения), но используются и наглядные мо­дельные представления типа идеального шара, абсолютно твердого тела. Теория всегда содержит чувственно-наглядные компоненты. Таким обра­зом, на обоих уровнях познания функционируют и чувства, и разум.

Различие эмпирического и теоретического уровней научного познания происходит по следующим основаниям (табл. 2):

Уровень отражения действительности,

Характер предмета исследования,

Применяемые методы изучения,

Формы познания,

Языковые средства.

Таблица 2

Различие эмпирического и теоретического уровней познания

Уровни научного познания Уровень отраже­ния Предмет изучения Методы научного познания Формы на­учного по­знания Язык
Эмпри-ческий Явление Эмпрический объект Наблюдение, сравнение, измерение, эксперимент Научный факт Естествен­ный
Переход - - Обобщение, абстрагирование, анализ, синтез, индукция, дедукция Научная проблема, научная гипотеза, эмпири­ческий закон -
Теоре­тический Сущность Теорети­ческий идеальный объект Идеализация, формализация, восхождение от абстрактного к конкретному, аксиоматичес­кий, мысленный эксперимент Научная теория Математи­ческий

Эмпирическое и теоретическое исследование направлено на познание одной и той же объективной реальности, но её видение, отражение в зна­нии происходит по-разному. Эмпирическое исследование в основе своей ориентировано на изучение внешних связей и сторон объектов, явлений и зависимостей между ними. В результате этого исследования выясняются эмпирические зависимости. Они являются результатом индуктивного обобщения опыта и представляют собой вероятностно-истинное знание. Таким является, например, закон Бойля-Мариотта, описывающий корреля­цию между давлением и объёмом газа: РV= соnst, где Р – давление газа, V – его объем. Вначале он был открыт Р. Бойлем как индуктивное обобщение опытных данных, когда в эксперименте была обнаружена зависимость между объемом сжимаего под давлением газа и величиной этого давления.



На теоретическом уровне познания происходит выделение внутрен­них, существенных связей объекта, которые фиксируются в законах. Сколько бы мы ни проделывали опытов и не обобщали их данные, простое индуктивное обобщение не ведет к теоретическому знанию. Теория не строится путем индуктивного обобщения фактов. Эйнштейн считал этот вывод одним из важных гносеологических уроков развития физики XX ве­ка. Теоретический закон – это всегда знание достоверное.

Эмпирическое исследование базируется на непосредственном практи­ческом взаимодействии исследователя с изучаемым объектом. И в этом взаимодействии познается природа объектов, их свойства и особенности. Проверяется ис­тинность эмпирического знания путем прямого обращения к опыту, к практике. При этом объекты эмпирического познания следует отличать от объектов реальности, которые обладают бесконечным числом признаков. Эмпирические объекты – это абстракции, обладающие фиксированным и ограниченным набором признаков.

В теоретическом исследовании отсутствует непосредственное практи­ческое взаимодействие с объектами. Они изучаются только опосредованно, в мысленном эксперименте, но не в реальном. Изучаются здесь теоретиче­ские идеальные объекты, которые называются идеализированными объек­тами, абстрактными объектами или конструктами. Их примерами могут служить материальная точка, идеальный товар, абсолютно твердое тело, идеальный газ и др. Например, материальную точку определяют как тело лишенное размера, но сосредоточивающее в себе всю массу тела. Таких тел в природе нет, они конструируются мышлением для выявления суще­ственных сторон изучаемого объекта. Проверка теоретического знания пу­тём обращения к опыту невозможна, и потому оно связывается с практи­кой посредством эмпирической интерпретации.

Уровни научного познания различаются и по функциям: на эмпириче­ском уровне происходит описание действительности, на теоретическом –объяснение и предсказание.

Эмпирический и теоретический уровни различаются по используемым методам и формам познания. Изучение эмпирических объектов осуществ­ляется с помощью наблюдения, сравнения, измерения и эксперимента. Средствами эмпирического исследования являются приборы, установки и другие средства реального наблюдения и эксперимента.

На теоретическом уровне отсутствуют средства материального, прак­тического взаимодействия с изучаемым объектом. Здесь применяются осо­бые методы: идеализация, формализация, мысленный эксперимент, аксио­матический, восхождение от абстрактного к конкретному.

Результаты эмпирического исследования выражаются на естествен­ном языке с добавлением специальных понятий в форме научных фактов. В них фиксируется объективная, достоверная информация об изучаемых объектах.

Результаты теоретического исследования выражаются в форме закона и теории. Для этого создаются специальные языковые системы, в которых понятия науки формализованы и математизированы.

Специфичностью теоретического познания являются его рефлексив­ность, направленность на себя, исследование самого процесса познания, его методов, форм, понятийного аппарата. В эмпирическом познании тако­го рода исследования, как правило, не ведутся.

В реальном познании действительности эмпирическое и теоретиче­ское знание всегда взаимодействуют как две противоположности. Данные опыта, возникая независимо от теории, рано или поздно охватываются теорией и становятся знаниями, выводами из неё.

С другой стороны, научные теории, возникая на своей особой теоре­тической основе, строятся относительно самостоятельно, вне жесткой и однозначной зависимости от эмпирических знаний, но подчиняются им, представляя в конечном счете обобщение данных опыта.

Нарушение единства эмпирического и теоретического знания, абсо­лютизация какого-либо из этих уровней ведет к ошибочным односторон­ним выводам – эмпиризму или схоластическому теоретизированию. Примерами последнего явля­ются концепция построения коммунизма в СССР в 1980 году, теория раз­витого социализма, антигенетическое учение Лысенко. Эмпиризм абсолю­тизирует роль фактов и недооценивает роль мышления, отрицает его ак­тивную роль и относительную самостоятельность. Единственным источником познания считается опыт, чувственное познание.

Методы научного познания

Рассмотрим сущность общенаучных методов познания. Эти методы возникают в лоне одной науки, а затем используются в ряде других. К та­ким методам относятся математические методы, эксперимент, моделиро­вание. Общенаучные методы разделяются на применяемые на эмпириче­ском уровне познания и на теоретическом уровне. К методам эмпириче­ского исследования относят наблюдение, сравнение, измерение, экспери­мент.

Наблюдение – систематическое целенаправленное восприятие явлений действительности, в ходе которого мы получаем знание о внешних сторо­нах, свойствах и их отношениях. Наблюдение – это активный познава­тельный процесс, опирающийся прежде всего на работу органов чувств че­ловека и его предметную материальную деятельность. Это, конечно, не значит, что мышление человека исключается из этого процесса. Наблюда­тель сознательно ищет объекты, руководствуясь определенной идеей, ги­потезой или прежним опытом. Результаты наблюдения всегда требуют оп­ределённой интерпретации в свете существующих теоретических положе­ний. Интерпретация данных наблюдения дает возможность ученому отделять существенные факты от несущественных, замечать то, что неспециалист может оставить без внимания. Поэтому в настоящее время в науке редко бывает, чтобы открытия делались неспециалистами.

Эйнштейн в разговоре с Гейзенбергом отмечал, что возможность на­блюдать данное явление или нет, зависит от теории. Именно теория долж­на установить, что можно наблюдать, а что нельзя.

Прогресс наблюдения как метод научного познания неотделим от прогресса средств наблюдения (например телескоп, микроскоп, спектро­скоп, радиолокатор). Приборы не только усиливают мощь органов чувств, но и дают нам как бы дополнительные органы восприятия. Так, приборы позволяют «видеть» электрическое поле.

Для того чтобы наблюдение было эффективным, оно должно удовле­творять следующим требованиям:

Преднамеренность или целенаправленность,

Планомерность,

Активность,

Систематичность.

Наблюдение может быть непосредственным, когда объект воздейст­вует на органы чувств исследователя, и опосредованным, когда субъект использует технические средства, приборы. В последнем случае об исследуемых объектах ученые делают заключение через восприятие результатов взаимодействия ненаблюдаемых объектов с наблюдаемыми объектами. Такое заключение основывается на определенной теории, устанавливающей определенное отношение между наблюдаемыми и ненаблюдаемыми объектами.

Необходимой стороной наблюдения является описание. Оно пред­ставляет собой фиксацию результатов наблюдения с помощью понятий, знаков, схем, графиков. Основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемое явление. Важно, чтобы понятия, используемые для описания, имели четкий и одно­значный смысл. Описание делится на два вида: качественное и количест­венное. Качественное описание предполагает фиксацию свойств изучаемо­го объекта, оно дает самое общее знание о нем. Количественное описание предполагает использование математики и числовую характеристику свойств, сторон и связей изучаемого объекта.

В научном исследовании наблюдение осуществляет две основные функции: обеспечение эмпирической информацией об объекте и проверку гипотез и теорий науки. Нередко наблюдение может играть и важную эв­ристическую роль, способствуя выдвижению новых идей.

Сравнение – это установление сходства и различия предметов и явле­ний действительности. В результате сравнения устанавливается то общее, что присуще нескольким объектам, а это ведет к познанию закона. Срав­ниваться должны лишь те объекты, между которыми может существовать объективная общность. Кроме того, сравнение должно осуществляться по наиболее важным, существенным признакам. Сравнение лежит в основе умозаключений по аналогии, которые играют большую роль: свойства из­вестных нам явлений могут быть распространены на неизвестные явления, имеющие между собой нечто общее.

Сравнение является не только элементарной операцией, применяемой в определённой области знания. В некоторых науках сравнение выросло до уровня основного метода. Например сравнительная анатомия, сравнительная эмбриология. Это указывает на все возрастающую роль сравнения в процессе научного познания.

Измерение исторически как метод развилось из операции сравнения, но в отличии от него является более мощным и универсальным познаватель­ным средством.

Измерение – процедура определения численного значения некоторой величины посредством сравнения с величиной, принятой за единицу изме­рения. Для того, чтобы измерить, необходимо наличие объекта измерения, единицы измерения, измерительного прибора, определенного метода из­мерения, наблюдателя.

Измерения бывают прямые и косвенные. При прямом измерении ре­зультат получается непосредственно из самого этого процесса. При кос­венном измерении искомая величина определяется математическим путём на основе знания других величин, получаемых прямым измерением. На­пример определение массы звезд, измерения в микромире. Измерение по­зволяет находить и формулировать эмпирические законы и в некоторых случаях служит источником формулирования научных теорий. В частно­сти, измерения атомных весов элементов явилось одной из предпосылок создания периодической системы Д.И. Менделеева, представляющей со­бой теорию свойств химических элементов. Знаменитые измерения Май-кельсоном скорости света впоследствии привели к коренной ломке усто­явшихся в физике представлений.

Важнейшим показателем качества измерения, его научной ценности является точность. Последняя зависит от качества и усердия ученого, от применяемых им методов, но главным образом от имеющихся измери­тельных приборов. Поэтому главными путями повышения точности изме­рения являются:

Совершенствование качества измерительных приборов, действующих
на основе некоторых утвердившихся принципов,

Создание приборов, действующих на основе новых принципов.
Измерение является одной из важнейших предпосылок применения в науке математических методов.

Чаще всего измерение представляет собой элементарный метод, кото­рый входит в качестве составной части в эксперимент.

Эксперимент – наиболее важный и сложный метод эмпирического познания. Под экспериментом понимается такой метод изучения объекта, когда исследователь активно воздействует на него путём создания искус­ственных условий, необходимых для выявления соответствующих свойств данного объекта.

Эксперимент предполагает использование наблюдения, сравнения и измерения как более элементарных методов исследования. Главная осо­бенность эксперимента во вмешательстве экспериментатора в течение естественных процессов, которое обусловливает активный характер данного метода познания.

Какие же преимущества вытекают из специфических особенностей эксперимента по сравнению с наблюдением?

В процессе эксперимента становится возможным изучение данного
явления в «чистом виде», т. е. исключаются различные побочные факторы,
затемняющие суть основного процесса.

Эксперимент позволяет исследовать свойства объектов действи­тельности в экстремальных условиях (при сверхнизких или сверхвысоких
температурах, при высочайшем давлении). Это может привести к неожи­данным эффектам, в результате чего обнаруживаются новые свойства объ­ектов. Таким методом были, например, открыты свойства сверхтекучести и
сверхпроводимости.

Важнейшим достоинством эксперимента является его повторяе­мость, причем условия его можно планомерно изменять.

Классификация экспериментов проводится по различным основаниям.

В зависимости от целей, можно выделить несколько видов экспери­мента:

- исследовательский – проводится в целях обнаружения у объекта не­
известных ранее свойств (классический пример – опыты Резерфорда по

рассеянию a-частиц, в результате которых была установлена планетарная
структура атома);

- проверочный – проводится для проверки тех или иных утверждений науки (примером проверочного эксперимента может служить проверка ги­потезы о существовании планеты Нептун);

- измерительный – проводится для получения точных значений тех или иных свойств объектов (например опытные плавки металлов, сплавов; опыты по исследованию прочности конструкций).

По характеру исследуемого объекта различаются физические, химические, биологические, психологические, социальные эксперименты.

По методу и результатам исследования эксперименты можно разделить на качественные и количественные. Первые из них скорее носят исследовательский, поисковый характер, вторые обеспечивают точное измерение всех существенных факторов, влияющих на ход изучаемого процесса.

Эксперимент любого вида может осуществляться как непосредствен­но с интересующим объектом, так и с его заместителем – моделью. Соот­ветственно эксперименты бывают натурные и модельные. Модельные используются в тех случаях когда эксперимент невозможен или нецелесообразен.

Наибольшее применение эксперимент получил в естествознании. Современная наука начиналась с экспериментов Г. Галилея. Од­нако в настоящее время все большее развитие он получает и в изучении общественных процессов. Такое распространение эксперимента во все большее число отраслей научного знания говорит о возрастающей важно­сти этого метода исследования. С его помощью решаются задачи по полу­чению значений свойств тех или иных объектов, проводится опытная про­верка гипотез и теорий, велико и эвристическое значение эксперимента в нахождении новых сторон изучаемых явлений. Эффективность экспери­мента возрастает и в связи с прогрессом экспериментальной техники. От­мечается и такая особенность: чем больше используется в науке экспери­мент, тем быстрее она развивается. Не случайно учебники эксперимен­тальных наук стареют много быстрее, чем наук описательных.

Наука не ограничивается эмпирическим уровнем исследования, она идет дальше, раскрывая сущностные связи и отношения в исследуемом объекте, которые, оформляясь в законе, познанном человеком, приобрета­ют определенную теоретическую форму.

На теоретическом уровне познания используются иные средства и ме­тоды познания. К методам теоретического исследования относятся: идеа­лизация, формализация, метод восхождения от абстрактного к конкретно­му, аксиоматический, мысленный эксперимент.

Метод восхождения от абстрактного к конкретному . Понятие «аб­страктное» употребляется в основном для характеристики человеческого знания. Под абстрактным понимается одностороннее, неполное знание, ко­гда выделены только те свойства, которые интересуют исследователя.

Понятие «конкретное» в философии может употребляться в двух смыслах: а) «конкретное» – сама действительность, взятая во всем много­образии свойств, связей и отношений; б) «конкретное» – обозначение мно­гогранного, всестороннего знания об объекте. Конкретное в этом смысле выступает как противоположность абстрактному знанию, т.е. знанию, бед­ному по содержанию, одностороннему.

В чем сущность метода восхождения от абстрактного к конкретному? Восхождение от абстрактного к конкретному есть всеобщая форма движе­ния познания. Согласно этому методу процесс познания разбивается на два относительно самостоятельных этапа. На первом этапе осуществляется пе­реход от чувственно-конкретного к его абстрактным определениям. Сам объект в процессе этой операции как бы «испаряется», превращаясь в со­вокупность зафиксированных мышлением абстракций, односторонних оп­ределений.

Второй этап процесса познания и есть собственно восхождение от аб­страктного к конкретному. Суть его состоит в том, что мысль движется от абстрактных определений объекта к всестороннему, многогранному зна­нию об объекте, к конкретному в познании. Следует отметить, что это две стороны одного процесса, которые обладают лишь относительной само­стоятельностью.

Идеализация – мысленное конструирование объектов, которые не су­ществуют в действительности. К таким идеальным объектам относятся, например, абсолютно черное тело, материальная точка, точечный электри­ческий заряд. Процесс конструирования идеального объекта обязательно предполагает абстрагирующую деятельность сознания. Так, говоря об аб­солютно черном теле, мы абстрагируемся от того факта, что все реальные тела обладают способностью отражать падающий на них свет. Для форми­рования идеальных объектов большое значение имеют и другие мысли­тельные операции. Это связано с тем, что при создании идеальных объек­тов мы должны достигнуть следующих целей:

Лишить реальные объекты некоторых присущих им свойств;
- мысленно наделить эти объекты определенными нереальными свойствами. Для этого необходим мысленный переход к предельному случаю в развитии какого-либо свойства и отбрасывание некоторых реальных свойств объектов.

Идеальные объекты играют в науке большую роль, они позволяют значительно упростить сложные системы, благодаря чему возникает воз­можность применять к ним математические методы исследования. Более того, наука знает немало примеров, когда исследование идеальных объек­тов привело к выдающимся открытиям (открытие Галилеем принципа инерции). Любая идеализация правомерна лишь в определенных пределах, она служит для научного решения только определенных проблем. Иначе применение идеализации может привести к некоторым заблуждениям. Только с учетом этого можно правильно оценить роль идеализации в по­знании.

Формализация – метод изучения самых разнообразных объектов пу­тем отображения их содержания и структуры в знаковой форме и исследо­вание логической структуры теории. Достоинство формализации заключа­ется в следующем:

Обеспечение полноты обозрения определённой области проблем, обобщенность подхода к их решению. Создаётся общий алгоритм решения проблем, например вычисления площадей различных фигур с помощью интегрального исчисления;

Использование специальной символики, введение которой обеспечи­вает краткость и четкость фиксации знания;

Приписывание отдельным символам или их системам определенных значений, что позволяет избежать многозначности терминов, которая свойственна естественным языкам. Поэтому при оперировании с формали­зованными системами рассуждения отличаются четкостью и строгостью, а выводы доказательностью;

Возможность формировать знаковые модели объектов и заменять изучение реальных вещей и процессов изучением этих моделей. Этим дос­тигается упрощение познавательных задач. У искусственных языков существует относительно большая независимость, самостоятельность знаковой формы по отношению к содержанию, поэтому в процессе формализации возможно временно отвлечься от содержания модели и исследовать лишь формальную сторону. Такое отвлечение от содержания может привести к парадоксальным, но поистине гениальным открытиям. Например, с помощью формализации было предсказано существование позитрона П. Дираком.

Аксиоматизация нашла широкое применение в математике и матема­тизированных науках.

Под аксиоматическим методом построения теорий понимается такая их организация, когда ряд утверждений вводится без доказательства, а все остальные выводятся из них по определенным логическим правилам. При­нимаемые без доказательства положения называются аксиомами или по­стулатами. Впервые этот метод был применен для построения элементар­ной геометрии Евклидом, затем он получил применение в различных нау­ках.

К аксиоматически построенной системе знания предъявляется ряд требований. Согласно требованию непротиворечивости в системе аксиом не должны быть выводимы одновременно какое-либо предложение и его отрицание. Согласно требованию полноты любое предложение, которое можно сформулировать в данной системе аксиом, можно в ней доказать или опровергнуть. Согласно требованию независимости аксиом любая из них не должна быть выводима из других аксиом.

В чем достоинства аксиоматического метода? Прежде всего аксиома­тизация науки требует точного определения используемых понятий и со­блюдения строгости выводов. В эмпирическом знании то и другое не дос­тигнуто, в силу чего применение аксиоматического метода требует про­гресса данной области знаний в этом отношении. Кроме того, аксиомати­зация упорядочивает знание, исключает из него ненужные элементы, уст­раняет двусмысленности и противоречия. Иначе говоря, аксиоматизация рационализирует организацию научного знания.

В настоящее время делаются попытки применения этого метода в не­математизированных науках: биологии, лингвистике, геологии.

Мысленный эксперимент осуществляется не с материальными объектами, а с идеальными копиями. Мысленный эксперимент выступает как идеальная форма реального эксперимента и может привести к важным открытиям. Именно мысленный эксперимент позволил Галилею открыть физический принцип инерции, легший в основу всей классической механики. Этот принцип не мог быть открыт ни в каком эксперименте с реальными объектами, в реально существующих средах.

К методам, применяемым как на эмпирическом, так и теоретическом уровнях исследования, относятся обобщение, абстрагирование, аналогия, анализ и синтез, индукция и дедукция, моделирование, исторический и ло­гический методы, математические методы.

Абстрагирование носит в умственной деятельности наиболее универ­сальный характер. Сущность этого метода состоит в мысленном отвлече­нии от несущественных свойств, связей и одновременном выделении од­ной или нескольких интересующих исследователя сторон изучаемого предмета. Процесс абстрагирования имеет двухступенчатый характер: от­деление существенного, выявления наиболее важного; реализация возможности абстрагирования, т. е. собственно акт абстракции или отвле­чения.

Результатом абстрагирования является образование различного рода абстракций – как отдельно взятых понятий, так и их систем. Следует отме­тить, что этот метод входит составной частью во все другие методы, более сложные по структуре.

Когда мы абстрагируем некоторое свойство или отношения ряда объ­ектов, то тем самым создаём основу для их объединения в единый класс. По отношению к индивидуальным признакам каждого из объектов, входя­щих в данный класс, объединяющий их признак выступает как общий.

Обобщение – метод, приём познания, в результате которого устанав­ливаются общие свойства и признаки объектов. Операция обобщения осу­ществляется как переход от частного или менее общего понятия и сужде­ния к более общему понятию или суждению. Например, такие понятия, как «сосна», «лиственница», «ель» являются первичными обобщениями, от ко­торых можно перейти к более общему понятию «хвойное дерево». Затем можно перейти к таким понятиям, как «дерево», «растение», «живой орга­низм».

Анализ – метод познания, содержанием которого является совокуп­ность приемов расчленения предмета на составляющие части с целью их всестороннего изучения.

Синтез – метод познания, содержанием которого является совокуп­ность приемов соединения отдельных частей предмета в единое целое.

Эти методы взаимно дополняют, обусловливают и сопровождают друг друга. Чтобы стал возможным анализ вещи, она должна быть зафиксиро­вана как целое, для чего необходимо ее синтетическое восприятие. И на­оборот, последнее предполагает ее последующее расчленение.

Анализ и синтез являются наиболее элементарными методами позна­ния, которые лежат в самом фундаменте человеческого мышления. Вместе с тем они являются и наиболее универсальными приемами, характерными для всех его уровней и форм.

Возможность анализа объекта в принципе безгранична, что логически следует из положения о неисчерпаемости материи. Однако всегда осуще­ствляется выбор элементарных составляющих объекта, определяемый це­лью исследования.

Анализ и синтез тесно взаимосвязаны с другими методами познания: экспериментом, моделированием, индукцией, дедукцией.

Индукция и дедукция . Разделение этих методов основано на выделе­нии двух типов умозаключений: дедуктивного и индуктивного. При де­дуктивном умозаключении делается вывод о некотором элементе множе­ства на основании знания общих свойств всего множества.

Все рыбы дышат жабрами.

Окунь – рыба

__________________________

Следовательно, окунь дышит жабрами.

Одной из посылок дедукции обязательно является общее суждение. Здесь наблюдается движение мысли от общего к частному. Такое движе­ние мысли очень часто применяется в научном исследозании. Так, Мак­свелл из нескольких уравнений, выражающих наиболее общие законы электродинамики, последовательно развернул полную теорию электромаг­нитного поля.

Особенно большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает новая научная ги­потеза. В этом случае дедукция является отправной точкой зарождения но­вой теоретической системы. Созданное таким путем знание определяет дальнейший ход эмпирических исследований и направляет построение но­вых индуктивных обобщений.

Следовательно, содержанием дедукции как метода познания является использование общих научных положений при исследовании конкретных явлений.

Индукция – умозаключение от частного к общему, когда на основании знания о части предметов класса делается вывод о классе в целом. Индук­ция как метод познания – совокупность познавательных операций, в ре­зультате которых осуществляется движение мысли от менее общих поло­жений к более общим. Таким образом, индукция и дедукция прямо проти­воположные направленности хода мысли. Непосредственной основой ин­дуктивного умозаключения является повторяемость явлений действитель­ности. Обнаруживая сходные черты у многих предметов определенного класса, мы делаем вывод о присущности этих черт всем предметам данно­го класса.

Выделяют следующие виды индукции:

- полная индукция, в которой общий вывод о классе предметов делает­ся на основании изучения всех предметов класса. Полная индукция даёт
достоверные выводы и может использоваться в качестве доказательства;

- неполная индукция, в которой общий вывод получается из посылок,
не охватывающих всех предметов класса. Различают три вида неполной
индукции:

Индукция через простое перечисление или популярная индукция, в которой общий вывод о классе предметов делается на том основании, что среди наблюдаемых фактов не встретилось ни одного, противоречащего обобщению;

Индукция через отбор фактов, осуществляется путём отбора их из общей массы по определённому принципу, уменьшающему вероятность случайных совпадений;

Научная индукция, в которой общий вывод о всех предметах класса
делается на основании знания необходимых признаков или причинных
связей части предметов класса. Научная индукция может давать не только
вероятные, но и достоверные выводы.

Методами научной индукции могут быть установлены причинные связи. Выделяются следующие каноны индукции (правила индуктивного исследования Бэкона-Милля):

Метод единственного сходства: если два или более случаев иссле­дуемого явления имеют общим лишь одно обстоятельство, а все остальные
обстоятельства различны, то это единственное сходное обстоятельство и
есть причина данного явления;

Метод единственного различия: если случаи, при которых явление
наступает или не наступает, различаются только в одном предшествующем обстоятельстве, а все другие обстоятельства тождественны, то это обстоятельство и есть причина данного явления;

Соединённый метод сходства и различия, представляющий собой
комбинацию двух первых методов;

Метод сопутствующих изменений: если изменение одного обстоя­тельства всегда вызывает изменение другого, то первое обстоятельство
есть причина второго;

Метод остатков: если известно, что причиной исследуемого явления
не служат необходимые для него обстоятельства, кроме одного, то это од­но обстоятельство и есть причина данного явления.

Привлекательность индукции состоит в тесной связи ее с фактами, с практикой. Она играет большую роль в научном исследовании – в выдви­жении гипотез, в открытии эмпирических законов, в процессе введения в науку новых понятий. Отмечая роль индукции в науке, Луи де Бройль пи­сал: «Индукция, поскольку она стремится избежать уже проторенных пу­тей, поскольку она неустранимо пытается раздвинуть уже существующие границы мысли, является истинным источником действительно научного прогресса» 1 .

Но индукция не может приводить к универсальным суждениям, в ко­торых выражаются закономерности. Индуктивные обобщения не могут осуществить переход от эмпирии к теории. Поэтому абсолютизировать роль индукции, как это делал Бэкон, в ущерб дедукции было бы неверно. Ф. Энгельс писал, что дедукция и индукция связаны между собой столь же необходимым образом, как анализ и синтез. Только во взаимной связи ка­ждый из них может в полной мере проявить свои достоинства. Дедукция является основным методом в математике, в теоретически развитых нау­ках, в эмпирических науках преобладают индуктивные выводы.

Исторический и логический методы тесно взаимосвязаны между со­бой. Они применяются при исследовании сложных развивающихся объек­тов. Сущность исторического метода состоит в том, что история развития изучаемого объекта воспроизводится во всей многогранности, с учётом всех законов и случайностей. Применяется он прежде всего для исследова­ния человеческой истории, но большую роль играет и в познании развития неживой и живой природы.

История объекта реконструируется логическим путем на основании изучения тех или иных следов прошлого, остатков прошлых эпох, запечатленных в материальных образованиях (природных или созданных человеком). Для исторического исследования характерна хронологическая после

________________

1 Бройль Л. По тропам науки. М., С. 178.

довательность рассмотрения материала, анализ этапов развития объектов исследования. С помощью исторического метода прослеживается вся эволюция объекта от его зарождения и до современного состояния, исследуются генетические отношения развивающегося объекта, выясняются движущия силы и условия развития объекта.

Содержание исторического метода раскрывается структурой исследования: 1) изучение «следов прошлого» как результатов исторических процессов; 2) сопоставление их с результатами современных процессов; 3) воссоздание событий прошлого в их пространственно-временных отношениях на основе интерпретации «следов прошлого» с помощью знания о современных процессах; 4) выделение основных этапов развития и причин перехода от одной стадии развития к другой.

Логический метод исследования – это воспроизведение в мышлении развивающегося объекта в форме исторической теории. При логическом исследовании отвлекаются от всех исторических случайностей, воспроиз­водя историю в общем виде, освобождённую от всего несущественного. Принцип единства исторического и логического требует, чтобы логика мысли следовала за историческим процессом. Это не значит, что мысль пассивна, наоборот, активность ее состоит в вычленении из истории суще­ственного, самой сути исторического процесса. Можно сказать, что исто­рический и логический методы познания не только отличны, но и в значи­тельной мере совпадают. Не случайно Ф. Энгельс отмечал, что логический метод есть, в сущности, тот же исторический, но освобожденный от исто­рической формы. Они взаимно дополняют друг друга.