Солнечное тепло: горячее водоснабжение и отопление. Системы солнечного теплоснабжения - документ Системы солнечного теплоснабжения

Солнечное теплоснабжение – способ отопления жилого дома, который с каждым днем становится все более популярным во многих, в основном развитых, государствах мира. Наибольшими успехами в области солнечной тепловой энергетики на сегодняшний день могут похвастаться в странах западной и центральной Европы. На территории Евросоюза на протяжении последнего десятилетия наблюдается ежегодный рост отрасли возобновляемой энергетики на 10–12%. Такой уровень развития – это очень существенный показатель.

Солнечный коллектор

Одна из наиболее очевидных областей применения солнечной энергетики – это ее использование в целях подогрева воды и воздуха (как теплоносителей). В климатических областях, где преобладает холодная погода, для комфортного проживания людей обязательны расчет и организация систем отопления каждого жилого дома. В них должно присутствовать горячее водоснабжение для различных нужд, к тому же дома необходимо отапливать. Конечно, лучшим вариантом здесь будет применение схемы, где работают автоматизированные системы теплоснабжения.

Больших объемов ежедневного поступления горячей воды в процессе производства требуют промышленные предприятия. В качестве примера можно привести Австралию, где на подогрев жидкого теплоносителя до температуры, не превышающей 100 o C, затрачивается практически 20 процентов всей расходуемой энергии. По этой причине в части развитых стран запада, а в большей мере в Израиле, Северной Америке, Японии и, конечно же, в Австралии, очень быстро происходит расширение производства солнечных отопительных систем.


В ближайшем будущем развитие энергетики, несомненно, будет направлено в пользу использования солнечного излучения. Плотность солнечной радиации на земной поверхности составляет в среднем 250 Вт на один метр квадратный. И это притом, что для обеспечения хозяйственных нужд человека в наименее индустриальных районах достаточно двух Ватт на квадратный метр.

Выгодное отличие солнечной энергии от других отраслей энергетики, использующих процессы сжигания ископаемого топлива, это экологичность получаемой энергии. Работа солнечного оборудования не влечет за собой выделения вредных выбросов в атмосферу.

Выбор схемы применения оборудования, пассивные и активные системы

Существует две схемы использования солнечного излучения в качестве системы отопления для дома. Это активные и пассивные системы. Пассивные системы отопления на солнечной радиации – те, в которых элементом, непосредственно абсорбирующим солнечную радиацию и образующим из нее теплоту, служит сама конструкция дома либо его отдельные части. Этими элементами могут служить забор, кровля, отдельные части здания, построенные на основе определенной схемы. В пассивных системах не используются механические движущиеся части.


Активные системы работают на основе противоположной схемы отопления дома, в них активно используются механические устройства (насосы, двигатели, при их использовании также производят расчет необходимой мощности).

Наиболее простыми по своей конструкции и менее затратными в финансовом плане при монтаже схемы являются системы пассивного действия. Такие схемы отопления не нуждаются в установке дополнительных устройств для абсорбции и последующего распределения солнечного излучения в системе отопления дома. Работа таких систем основана на принципе прямого обогрева жилого помещения прямо через пропускающие свет стены, расположенные на южной стороне. Дополнительную функцию обогрева осуществляют внешние поверхности элементов ограждения дома, которые оборудуются слоем прозрачных экранов.

Для запуска процесса преобразования солнечной радиации в тепловую энергию применяют систему конструкций, основанную на использовании гелиоприёмников с прозрачной поверхностью, где основную функцию играет «парниковый эффект», используются возможности стекла удерживать тепловое излучение, благодаря чему и повышают температуру внутри помещения.

Стоит отметить, что применение только одного из видов систем может быть не совсем оправдано. Зачастую тщательный расчет показывает, что добиться значительного снижения потерь тепла и уменьшения потребностей здания в энергии можно путем применения интегрированных систем. Общая работа и активной, и пассивной системы путем сочетания положительных качеств даст максимальный эффект.


Обычно проводимый расчет эффективности показывает, что пассивное использование излучения солнца обеспечит потребности вашего дома в отоплении приблизительно на 14–16 процентов. Такая система будет важной составляющей процесса получения тепла.

Однако, невзирая на определенные положительные качества пассивных систем, основные возможности для полного обеспечения потребностей здания в тепле все-таки необходимо применение активного отопительного оборудования. Системы, функцией которых является непосредственно поглощение, аккумуляция и распределение солнечной радиации.

Планирование и расчет

Произвести расчет возможности монтажа активных отопительных систем, использующих солнечную энергию (кристаллические солнечные фотоэлементы, солнечные коллекторы), желательно на стадии проектирования здания. Но все же этот момент не носит обязательного характера, установка такой системы возможна и на уже существующее задание независимо от года его постройки (основа для успеха – правильный расчет всей схемы).


Монтаж оборудования осуществляют на южную сторону дома. Такое расположение создает условия для максимального поглощения поступающей солнечной радиации зимой. Фотоэлементы, преобразующие энергию солнца и установленные на неподвижную конструкцию, наиболее эффективны при их монтаже относительно поверхности земли под углом равным географической локации отапливаемого здания. Угол наклона крыши, градус поворота дома к югу – это значимые моменты, которые в обязательном порядке надо учитывать, производя расчет всей схемы отопления.

Солнечные фотоэлементы и коллекторы на солнечном излучении необходимо устанавливать максимально близко к месту энергопотребления. Помните, что чем ближе вы построите ванную и кухню, тем меньше будут потери тепла (в таком варианте можно обойтись и одним солнечным коллектором, который будет обогревать оба помещения). Основным критерием оценки при подборе необходимого вам оборудования является его коэффициент полезного действия.

Отопительные солнечные системы активного действия, делятся на следующие группы по следующим критериям:

  1. Применение дублирующего контура;
  2. Сезонность работы (на протяжении всего года или в определенный сезон);
  3. Функционального назначения – отопительные, снабжение горячей водой и комбинированные системы;
  4. Применяемый теплоноситель – жидкость или воздух;
  5. Примененное техническое решение количества контуров (1, 2 или более).

Общие экономические данные будут служить основным фактором выбора в пользу одного из типов оборудования. Правильно определиться вам поможет грамотный тепловой расчет всей системы. Расчет необходимо выполнять, учитывая показатели каждого конкретного помещения, где намечена организация солнечного отопления и (или) горячего водоснабжения. Стоит учитывать месторасположение строения, климатические природные условия, размер стоимости вытесняемого энергетического ресурса. Правильный расчет и удачный выбор схемы организации теплоснабжения – залог экономической целесообразности применения оборудования солнечной энергетики.


Солнечная система теплоснабжения

Самой распространенной из используемых схем отопления является установка солнечных коллекторов, в которых предусмотрена функция накопления абсорбированной энергии в специальной емкости – аккумуляторе.

На сегодняшний день наибольшее распространение получили двухконтурные схемы отопления жилых помещений, в которых установлена принудительная система циркуляции теплоносителя в коллекторе. Принцип его работы следующий. Подача горячей воды осуществляется из верхней точки накопительного бака, процесс происходит автоматически согласно законам физики. Холодная проточная вода напором подается в нижнюю часть бака, эта вода вытесняет собирающуюся в верхней части бака нагретую, которая далее поступает в систему горячего водоснабжения дома для удовлетворения его хозяйственных нужд и нужд отопления.

Для односемейного дома обычно устанавливают бак накопитель вместимостью от 400 до 800 литров. Для разогрева теплового носителя таких объемов в зависимости от природных условий требуется правильно рассчитать площадь поверхности солнечного коллектора. Также необходимо обосновать использование оборудование экономически.

Стандартный набор оборудования для монтажа отопительной системы на солнечном излучении следующий:

  • Непосредственно сам солнечный коллектор;
  • Крепежная система (опоры, балки, держатели);
  • Накопительный бак;
  • Бак компенсирующих избыточное расширение теплового носителя;
  • Устройство контроля работы насоса;
  • Насос (комплектом клапанов);
  • Температурные датчики;
  • Теплообменные устройства (применяют в схемах с большими объемами);
  • Теплоизолированные трубы;
  • Предохранительная и регулирующая арматура;
  • Фитинги.

Система на основе теплопоглощающих панелей. Такие панели, как правило, применяют на этапе нового строительства. Для их монтажа необходимо построить специальную конструкцию, называемую горячей крышей. Это означает, что панели необходимо вмонтировать непосредственно в конструкцию крыши, при этом используя элементы кровли в качестве составных элементов корпуса оборудования. Такая установка снизит ваши затраты на создание системы отопления, однако потребует высококачественной работы по гидроизоляции стыков устройств и кровли. Такой способ установки оборудования потребует от вас тщательного проектирования и планирования всех этапов работы. Надо решить много задач по разводке труб, размещению накопительного бака, установке насоса, регулировке уклонов. Достаточно много проблем при монтаже придется решить в случае, если здание не самым удачным образом повернуто к югу.

В целом проект солнечных систем отопления будет отличным от других в той или иной степени. Неизменными останутся только базовые принципы системы. Поэтому привести точный перечень необходимых деталей для полного монтажа всей системы невозможно, так как в процессе установки может возникнуть необходимость применения дополнительных элементов и материалов.

Жидкостные отопительные системы

В системах, работающих на основе жидкого теплоносителя, в качестве аккумулирующего вещества применяют обычную воду. Абсорбция энергии происходит в солнечных коллекторах плоской конструкции. Энергия аккумулируется в баке накопителе и расходуется по мере возникновения надобности.

Для передачи энергии от накопителя в здание применяют водо-водяной или водовоздушный теплообменник. Система горячего водообеспечения оборудована дополнительным баком, который называют баком предварительного нагрева. Вода нагревается в нем за счет солнечного излучения и далее поступает в обычный водонагреватель.

Воздушная отопительная система


Такая система в качестве носителя тепла использует воздух. Разогревание теплоносителя осуществляется в плоском солнечном коллекторе, а далее нагретый воздух попадает в отапливаемое помещение либо в специальный накопительный прибор, где абсорбированная энергия накапливается в специальной насадке, которая обогревается поступающим горячим воздухом. Благодаря этой особенности система продолжает снабжать дом теплом даже ночью, когда солнечное излучение не доступно.

Системы с принудительной и естественной циркуляцией

Основа работы систем с естественной циркуляцией состоит в самостоятельном движении теплоносителя. Под воздействием повышающейся температуры он теряет плотность и поэтому стремиться в верхнюю часть устройства. Возникающая разница в величине давлений и заставляет функционировать оборудование.

Почти половина всей производимой энергии используется для обогрева воздуха. Солнце светит и зимой, но его излучение обычно недооценивается.

Декабрьским днем недалеко от Цюриха физик А. Фишер генерировал пар; это было, когда солнце находилось в своей самой низкой точке, а температура воздуха была 3°С. Днем позже солнечный коллектор площадью 0,7 м2 нагрел 30 л холодной воды из садового водопровода до +60°С.

Солнечная энергия зимой может легко использоваться для обогрева воздуха в помещениях. Весной и осенью, когда часто бывает солнечно, но холодно, солнечный обогрев помещений позволит не включать основное отопление. Это дает возможность сэкономить часть энергии, а соответственно и деньги. Для домов, которыми редко пользуются, или для сезонного жилья (дачи, бунгало), обогрев солнечной энергией особенно полезен зимой, т.к. исключает чрезмерное охлаждение стен, предотвращая разрушение от конденсации влаги и плесени. Таким образом, ежегодные эксплуатационные расходы в основном снижаются.

При отоплении домов с помощью солнечного тепла необходимо решать проблему теплоизоляции помещений на основе архитектурно-конструктивных элементов, т.е. при создании эффективной системы солнечного отопления следует возводить дома, имеющие хорошие теплоизоляционные свойства.


Стоимость тепла
Вспомогательное отопление

Солнечный вклад в отопление дома
К сожалению, период поступления тепла от Солнца далеко не всегда совпадает по фазе с периодом появления тепловых нагрузок.

Большая часть энергии, которая имеется в нашем распоряжении в течение летнего периода, теряется из-за отсутствия постоянного спроса на нее (на самом деле коллекторная система является до некоторой степени системой саморегулирующейся: когда температура носителя достигает равновесного значения, тепловосприятие прекращается, поскольку тепловые потери от солнечного коллектора становятся равными воспринимаемому теплу).

Количество полезного тепла, поглощенного солнечным коллектором, зависит от 7 параметров:

1. величины поступающей солнечной энергии;
2. оптических потерь в прозрачной изоляции;
3. поглощающих свойств тепловоспринимающей поверхности солнечного коллектора;
4. эффективности теплоотдачи от теплоприемника (от тепловоспринимающей поверхности солнечного коллектора к жидкости, т.е. от величины эффективности теплоприемника);
5. пропускательной способности прозрачной теплоизоляции, которая определяет уровень тепловых потерь;
6. температуры тепловоспринимающей поверхности солнечного коллектора, которая в свою очередь зависит от скорости теплоносителя и температуры теплоносителя на входе в солнечный коллектор;
7. температуры наружного воздуха.

Эффективность солнечного коллектора, т.е. отношение использованной энергии и падающей, будет определяться всеми этими параметрами. При благоприятных условиях она может достичь 70%, а при неблагоприятных снизиться до 30%. Точное значение эффективности можно получить при предварительном расчете только путем полного моделирования поведения системы с учетом всех факторов, перечисленных выше. Очевидно, что такая задача может быть решена только с применением компьютера.

Поскольку плотность потока солнечной радиации постоянно меняется, то для расчетных оценок можно пользоваться полными суммами радиации за день или даже за месяц.

В табл. 1 в качестве примера приведены:

  • средние месячные суммы поступления солнечной радиации, измеренные на горизонтальной поверхности;

  • суммы, рассчитанные для вертикальных стен, обращенных на юг;

  • суммы для поверхностей с оптимальным углом наклона 34° (для Кью, близ Лондона).
  • Таблица 1. Месячные суммы прихода солнечной радиации для Кью (близ Лондона)

    Из таблицы видно, что поверхность с оптимальным углом наклона получает (в среднем в течение 8 зимних месяцев) примерно в 1,5 раза больше энергии, чем горизонтальная поверхность. Если известны суммы прихода солнечной радиации на горизонтальную поверхность, то для пересчета на наклонную поверхность их можно умножить на произведение этого коэффициента (1,5) и принятого значения эффективности солнечного коллектора, равного 40%, т.е.

    1,5*0,4=0,6

    При этом получится количество полезной энергии, поглощенной наклонной тепловоспринимающей поверхностью в течение данного периода.

    Для того, чтобы определить эффективный вклад солнечной энергии в теплоснабжение здания даже путем ручного подсчета, необходимо составить по крайней мере месячные балансы потребностей и полезного тепла, получаемого от Солнца. Для наглядности рассмотрим пример.

    Если использовать приведенные выше данные и рассмотреть дом, для которого интенсивность тепловых потерь составляет 250 Вт/°C, местоположение характеризуется годовым числом градусо-дней равным 2800 (67200°C*ч). а площадь солнечных коллекторов составляет, например, 40 м2, то получается следующее распределение по месяцам (см. табл. 2).

    Таблица 2. Расчет эффективного вклада солнечной энергии

    Месяц °C*ч/мес Сумма радиации на горизонтальной поверхности, кВт*ч/м2 Полезное тепло на единицу площади коллектора (D*0,6), кВт*ч/м2 Суммарное полезное тепло (E*40 м2), кВт*ч Солнечный вклад, кВт*ч/м2
    A B C D E F G
    Январь 10560 2640 18,3 11 440 440
    Февраль 9600 2400 30,9 18,5 740 740
    Март 9120 2280 60,6 36,4 1456 1456
    Апрель 6840 1710 111 67,2 2688 1710
    Май 4728 1182 123,2 73,9 2956 1182
    Июнь - - 150,4 90,2 3608 -
    Июль - - 140,4 84,2 3368 -
    Август - - 125,7 75,4 3016 -
    Сентябрь 3096 774 85,9 51,6 2064 774
    Октябрь 5352 1388 47,6 28,6 1144 1144
    Ноябрь 8064 2016 23,7 14,2 568 568
    Декабрь 9840 2410 14,4 8,6 344 344
    Сумма 67200 16800 933 559,8 22392 8358

    Стоимость тепла
    Подсчитав количество тепла, обеспечиваемого за счет Солнца, необходимо представить его в денежном выражении.

    Стоимость выработанного тепла зависит от:

  • стоимости топлива;

  • теплотворной способности топлива;

  • общей эффективности системы.
  • Полученные таким образом эксплуатационные расходы можно затем сравнить с капитальными затратами на солнечную отопительную систему.

    В соответствии с этим, если считать, что в рассмотренном выше примере солнечная отопительная система используется вместо традиционной системы отопления, потребляющей, например, газовое топливо и вырабатывающей тепло стоимостью 1,67 руб/кВт*ч, то, чтобы определить полученную годовую экономию, надо 8358 кВт*ч, обеспечиваемых за счет солнечной энергии (согласно расчетам табл. 2 для площади коллектора 40 м2), умножить на 1,67 руб/кВт*ч, что дает

    8358*1,67 = 13957,86 руб.

    Вспомогательное отопление
    Одним из вопросов, наиболее часто задаваемых людьми, которые хотят понять использование солнечной энергии для отопления (или другой цели), является вопрос: «Что делать, когда солнце не светит?» Поняв концепцию запасания энергии, они задают следующий вопрос: «Что делать, когда в аккумуляторе не остается больше тепловой энергии?» Вопрос закономерен, и необходимость в дублирующей, часто традиционной системе является серьезным камнем преткновения для широкого принятия солнечной энергии в качестве альтернативы существующим источникам энергии.

    Если мощности системы солнечного теплоснабжения недостаточно, чтобы продержать здание в течение периода холодной, пасмурной погоды, то последствия, даже один раз за зиму, могут быть достаточно серьезными, заставляющими предусматривать в качестве дублирующей обычную полномерную систему отопления. Большинство зданий, отапливаемых солнечной энергией, нуждаются в полномерной дублирующей системе. В настоящее время в большинстве районов солнечная энергия должна рассматриваться в качестве средства снижения расхода традиционных видов энергии, а не как полный их заменитель.

    Обычные отопители являются подходящими дублерами, но существует немало и других альтернатив, например:

    Камины;
    - дровяные печи;
    - дровяные калориферы.

    Предположим, однако, что нам захотелось сделать систему солнечного теплоснабжения достаточно большой, чтобы обеспечить теплом помещение в наиболее неблагоприятных условиях. Поскольку сочетание очень холодных дней и долгих периодов облачной погоды случается редко, то дополнительные размеры солнечной энергетической установки (коллектор и аккумулятор), которые потребуются для этих случаев, обойдутся слишком дорого при сравнительно небольшой экономии топлива. Кроме того, большую часть времени система будет работать при мощности ниже номинальной.

    Система солнечного теплоснабжения, рассчитанная на обеспечение 50% отопительной нагрузки, может дать достаточно тепла только на 1 день очень холодной погоды. При удвоении размеров солнечной системы дом будет обеспечен теплом в течение 2 холодных пасмурных дней. Для периодов более 2 дней последующее увеличение размеров будет столь же неоправданным, как и предыдущее. Кроме того, будут периоды мягкой погоды, когда второе увеличение не потребуется.

    Теперь, если увеличить площадь коллекторов отопительной системы еще в 1,5 раза, чтобы продержаться 3 холодных и облачных дня, то теоретически она будет достаточной для обеспечения 1/2 всей потребности дома в течение зимы. Но, разумеется, на практике этого может не быть, поскольку случается иногда 4 (и более) дня подряд холодной облачной погоды. Чтобы учесть этот 4-ый день, нам потребуется система солнечного отопления, которая теоретически может собрать в 2 раза больше тепла, чем это необходимо зданию в течение отопительного сезона. Ясно, что холодные и облачные периоды могут быть более продолжительными, чем предусмотрено в проекте системы солнечного теплоснабжения. Чем больше коллектор, тем менее интенсивно используется каждое дополнительное приращение его размеров, тем меньше энергии экономится на единицу площади коллектора и тем меньше окупаемость капиталовложений на каждую дополнительную единицу площади.

    Тем не менее, предпринимались смелые попытки накопить достаточное количество тепловой энергии солнечного излучения для покрытия всей потребности в отоплении и отказаться от вспомогательной системы отопления. За редким исключением таких систем, как солнечный дом Г. Хэя, долговременное аккумулирование тепла является, пожалуй, единственной альтернативой вспомогательной системе. Г. Томасон близко подошел к 100%-ному солнечному отоплению в своем первом доме в Вашингтоне; только 5% отопительной нагрузки покрывалось за счет стандартного отопителя на жидком топливе.

    Если вспомогательная система покрывает лишь небольшой процент всей нагрузки, то есть смысл использовать электроотопление, несмотря на то, что оно требует производства значительного количества энергии на электростанции, которая затем преобразуется в тепло для обогрева (на электростанции расходуется 10500...13700 кДж для производства 1 кВт*ч тепловой энергии в здании). В большинстве случаев электрообогреватель будет дешевле нефтяной или газовой печи, а сравнительно небольшое количество электроэнергии, необходимой для обогрева здания, может оправдать его применение. Кроме того, электронагреватель - менее материалоемкое устройство благодаря сравнительно небольшому количеству материала (по сравнению с отопителем), идущему на изготовление электроспиралей.

    Так как КПД солнечного коллектора существенно возрастает, если эксплуатировать его при низких температурах, то отопительная система должна рассчитываться на использование как можно более низких температур - даже на уровне 24...27°C. Одно из достоинств системы Томасона, использующей теплый воздух, заключается в том, что она продолжает извлекать полезное тепло из аккумулятора при температурах, почти равных температуре помещения.

    В новом строительстве отопительные системы можно рассчитывать на использование более низких температур, например, путем удлинения трубчато-ребристых радиаторов с горячей водой, увеличения размеров радиационных панелей или увеличения объема воздуха более низкой температуры. Проектировщики чаще всего останавливают свой выбор на отоплении помещения с помощью теплого воздуха или на применении увеличенных радиационных панелей. В системе воздушного отопления лучше всего используется низкотемпературное запасенное тепло. Лучистые отопительные панели имеют длительное запаздывание (между включением системы и нагревом воздушного пространства) и обычно требуют более высоких рабочих температур теплоносителя, чем системы с горячим воздухом. Поэтому тепло из аккумулирующего устройства не используется в полной мере при более низких температурах, которые приемлемы для систем с теплым воздухом, да и общий КПД такой системы ниже. Превышение размеров системы из радиационных панелей для получения результатов, аналогичных результатам при использовании воздуха, может повлечь за собой значительные дополнительные затраты.

    Для повышения общего КПД системы (солнечного отопления и вспомогательной дублирующей системы) и одновременного снижения общих затрат путем ликвидации простоя составных частей, многие проектировщики избрали путь интегрирования солнечного коллектора и аккумулятора со вспомогательной системой. Общими являются такие составные элементы, как:

    Вентиляторы;
    - насосы;
    - теплообменники;
    - органы управления;
    - трубы;
    - воздуховоды.

    На рисунках статьи Системное проектирование показаны различные схемы таких систем.

    Ловушкой при проектировании стыковых элементов между системами является увеличение органов управления и движущихся частей, что повышает вероятность механических поломок. Искушение увеличить на 1...2% КПД путем добавления еще одного устройства на стыке систем является почти непреодолимым и может быть наиболее распространенной причиной выхода из строя солнечной отопительной системы. Обычно вспомогательный обогреватель не должен нагревать отсек аккумулятора солнечного тепла. Если это происходит, то фаза сбора солнечного тепла будет менее эффективной, так как почти всегда этот процесс будет протекать при более высоких температурах. В других системах снижение температуры аккумулятора благодаря использованию тепла зданием повышает общий КПД системы.

    Причины других недостатков этой схемы объясняются большой потерей тепла из аккумулятора из-за его постоянно высоких температур. В системах, в которых вспомогательное оборудование не нагревает аккумулятор, последний будет терять значительно меньше тепла при отсутствии солнца в течение нескольких дней. Даже в спроектированных таким путем системах потери тепла из контейнера составляют 5...20% всего тепла, поглощенного системой солнечного отопления. С аккумулятором, обогреваемом вспомогательным оборудованием, потеря тепла будет значительно выше и может быть оправдана только в том случае, если контейнер аккумулятора находится внутри отапливаемого помещения здания

    Главным критерием уюта в частном коттедже или квартире является тепло. В холодном доме даже самая шикарная обстановка не поможет создать комфортных условий. Но чтобы оптимальная для проживания температура поддерживалась в помещении не только летом, но и зимой понадобится монтаж системы отопления.

    Сделать это сегодня можно легко, приобретя в качестве источника тепла газовый, дизельный или электрический котел. Но проблема заключается в том, что топливо для такого оборудования стоит дорого и доступно не во всех населенных пунктах. Что же тогда выбрать? Лучшим решением являются альтернативные источники тепла и в частности солнечное отопление.

    Устройство и принцип работы

    Что же представляет собой такая система? В первую очередь следует сказать, что есть два варианта солнечного отопления. Они предполагают использование различных как в конструктивном плане, так и по назначению элементов:

    • Коллектора;
    • Фотоэлектрической панели.

    И если оборудование первого типа предназначено сугубо для поддержания в помещении комфортной температуры, то солнечные панели для отопления дома могут применяться для получения электричества и тепла. Их принцип работы основан на преобразовании энергии солнца и накапливании ее в аккумуляторах, чтобы потом использовать для различных нужд.

    Смотрим видео, все о данном коллекторе:

    Применение коллектора позволяет организовать только солнечное системы отопление для частного дома, при этом используется тепловая энергия. Такое устройство действует следующим образом. Солнечные лучи подогревают воду, которая является теплоносителем и поступает с трубопровод. Эта же система может использоваться и в качестве горячего водоснабжения. В состав входят специальные фотоэлементы.

    Устройство коллектора

    Но кроме них в комплектацию солнечного отопления включены:

    • Специальный бак;
    • Аванкамеры;
    • Радиатор, выполненный из трубок и заключенный в короб, у которого передняя стенка выполнена из стекла.

    Солнечные батареи для отопления дома размещаются на крыше. В нем вода нагреваясь перемещается в аванкамеру где происходит ее замена горячим теплоносителем. Это позволяет поддерживать в системе постоянное динамическое давление.

    Виды отопления с использованием альтернативных источников

    Самый простой способ преобразования энергии светила в тепло – это использование солнечных батарей для отопления дома. Они все чаще используются в качестве дополнительных источников энергии. Но что же представляют собой эти устройства и действительно ли они эффективны?

    Смотрим видео, виды и их особенности работы:

    Задача, установленного на крыше коллектора солнечного системы отопления для дома впитать как можно больше солнечного излучения, преобразовав его затем в так необходимую человеку энергию. Но при этом следует учитывать, что оно может быть превращено как в тепловую, так и электрическую энергию. Для получения тепла и подогрева воды используют солнечные системы отопления. Для получения электрического тока используют специальные батареи. Они аккумулируют энергию в дневное время суток и отдают ее ночью. Однако сегодня существуют и комбинированные системы. В них солнечные панели вырабатывают одновременно тепло и электричество.

    Что касается солнечных водонагревателей для отопления дома, то они представлены на рынке широкой линейкой. Причем модели могут иметь различное назначение, дизайн, принцип работы, габариты.

    Различные варианты

    Например, по внешнему виду и конструкции системы отопления частного дома подразделяются на:

    1. Плоские;
    2. Трубчатые вакуумные.

    По назначению они классифицируются на используемые для:

    • Системы отопления и ГВС;
    • Для нагрева воды в бассейне.

    Есть отличия и принципе работы. Солнечное отопление с применением коллекторов является идеальным выбором для дачных домиков, так как не требуют подключения к электросети. Модели с принудительной циркуляцией подключают к общей системе отопления, в них циркуляция теплоносителя осуществляется при помощи насоса.

    Смотрим видео, сравниваем плоский и трубчатый коллектор:

    Не все коллекторы пригодны для солнечного отопления загородного дома. Согласно этому критерию они делятся на:

    • Сезонные;
    • Круглогодичные.

    Первые применяются для отопления дачных строений, вторые в частных домовладениях.

    Сравниваем с обычными система отопления

    Если сравнивать это оборудование с газовым или электрическим, то оно имеет гораздо больше преимуществ. В первую очередь это экономия топлива. Летом солнечное отопление способно полностью обеспечить проживающих в доме людей горячей водой. Осенью и весной, когда ясных дней мало, оборудование можно использовать для снижения нагрузки на стандартный котел. Что касается зимней поры, то обычно в это время эффективность работы коллекторов очень мала.

    Смотрим видео, эффективность коллекторов зимой:

    Но кроме экономии топлива использование оборудования, работающего на солнечных батареях, снижает зависимость от газа и электричества. Для установки солнечного отопления не нужно получать разрешение и установить его сможет каждый, кто имеет элементарные знания в сантехнике.

    Смотрим видео, критерии подбора оборудования:

    Еще один плюс – это большая продолжительность работы коллектора. Гарантированный срок службы оборудования составляет не менее 15 лет, значит на этот период ваши коммунальные платежи будут минимальными.

    Однако, как и у любого устройства у коллектора имеются некоторые недостатки:

    • На солнечные водонагреватели для частного дома цена достаточно высокая;
    • Невозможность использования как единственного источника тепла;
    • Необходима установка бака-накопителя.

    Есть и еще один нюанс. Эффективность работы солнечного отопления зависит от региона. В южных районах, где активность солнца высока оборудование будет иметь самый большой КПД. Поэтому наиболее выгодно использовать такое оборудование на юге и менее эффективным оно будет на севере.

    Выбор солнечного коллектора и его монтаж

    Прежде, чем приступать к установке оборудования, входящего в отопительную систему необходимо изучить его возможности. Для того чтобы узнать сколько тепла потребуется на обогрев дома необходимо рассчитать его площадь. Важно правильно выбрать место для установки солнечного коллектора. Оно должно быть максимально освещенным на протяжении дня. Поэтому обычно оборудование устанавливаются на южной части крыши.

    Выполнение монтажных работ лучше доверить специалистам, потому что даже небольшая ошибка в установке системы солнечного отопления приведет к значительному снижению эффективности системы. Только при правильной установке солнечного коллектора он прослужит до 25 лет, причем полностью окупив себя за первые 3 года.

    Основные типы коллекторов и их характеристики

    Если здание по каким-либо причинам не подходит для установки оборудования, то можно разместить панели на соседнем строении, а накопитель поставить в подвале.

    Преимущества солнечного отопления

    Нюансы, на которые стоит обратить внимание при выборе этой системы были рассмотрены выше. И если вы все сделали правильно, то ваша система отопления на солнечных коллекторах доставит вам только приятные моменты. Среди ее достоинств следует отметить:

    • Возможность круглогодичного обеспечения дома теплом, с возможностью регулировки температуры;
    • Полная автономия от централизованных коммунальных сетей и снижение финансовых расходов;
    • Использование солнечной энергии на различные нужды;
    • Длительный эксплуатационный срок оборудования и редкие аварийные ситуации.

    Единственное, что останавливает потребителей от покупки солнечной системы для отопления частного дома – это зависимость их работы от географии проживания. Если в вашем регионе ясные дни редкость, то эффективность оборудования будет минимальной.

    Использование “зеленой” энергии, поставляемой природными стихиями, позволяет существенно сокращать коммунальные расходы. К примеру, устроив солнечное отопление частного дома, вы будете снабжать фактически бесплатным теплоносителем низкотемпературные радиаторы и системы теплых полов. Согласитесь, это уже экономия.

    Все о “зеленых технологиях” вы узнаете из предложенной нами статьи. С нашей помощью вы запросто разберетесь в разновидностях солнечных установок, способах их устройства и специфике эксплуатации. Наверняка заинтересуетесь одним из популярных вариантов, интенсивно работающих в мире, но не слишком пока востребованных у нас.

    В представленном вашему вниманию обзоре разобраны конструктивные особенности систем, детально описаны схемы подключения. Приведен пример расчета солнечного отопительного контура для оценки реалий его сооружения. В помощь самостоятельным мастерам прилагаются фото-подборки и видео.

    В среднем 1 м 2 поверхности земли получает 161 Вт солнечной энергии в час. Разумеется, на экваторе этот показатель будет во много раз выше чем в Заполярье. Кроме того, плотность солнечного излучения зависит от времени года.

    В Московской области интенсивность солнечного излучения в декабре-январе отличается от мая-июля более чем в пять раз. Однако современные системы настолько эффективны, что способны работать практически всюду на земле.

    Соорудить солнечное отопление частного дома своими руками – не такая и сложная задача, как кажется неосведомленному обывателю. Для этого понадобятся навыки сварщика и материалы, доступные в любом строительном магазине.

    Актуальность создания солнечного отопления частного дома своими руками

    Получить полную автономию – мечта каждого владельца, затевающего частное строительство. Но действительно ли солнечная энергия способна отапливать жилой дом, особенно если устройство для ее накопления собрано в гараже?

    В зависимости от региона солнечный поток может давать от 50 Вт/кв.м в пасмурный день до 1400 Вт/кв.м при ясном летнем небе. При таких показателях даже примитивный коллектор с низким КПД (45-50%) и площадью 15 кв.м. может выдавать в год около 7000-10000 кВт*ч. А это сэкономленные 3 тонны дров для твердотопливного котла!

    • в среднем на квадратный метр устройства приходится 900 Вт;
    • чтобы повысить температуру воды, необходимо затратить 1,16 Вт;
    • учитывая также теплопотери коллектора, 1 кв.м сможет нагреть около 10 литров воды в час до температуры 70 градусов;
    • для обеспечения 50 л горячей воды, необходимой одному человеку, понадобится затратить 3,48 кВт;
    • сверившись с данными гидрометцентра о мощности солнечного излучения (Вт/кв.м) в регионе, необходимо 3480 Вт разделить на получившуюся мощность солнечного излучения – это и будет нужная площадь солнечного коллектора для нагрева 50 л воды.

    Как становится понятно, эффективное автономное отопление исключительно с использованием солнечной энергии осуществить довольно проблематично. Ведь в хмурую зимнюю пору солнечного излучения крайне мало, а разместить на участке коллектор площадью 120 кв.м. не всегда получится.

    Так неужели солнечные коллекторы нефункциональны? Не стоит заранее сбрасывать их со счетов. Так, с помощью подобного накопителя можно летом обходиться без бойлера – мощности будет достаточно для обеспечения семьи горячей водой. Зимой же удастся сократить затраты на энергоносители, если подавать уже нагретую воду из солнечного коллектора в электрический бойлер.
    Кроме того, солнечный коллектор станет отличным помощником тепловому насосу в доме с низкотемпературным отоплением (теплыми полами).

    Так, зимой нагретый теплоноситель будет использоваться в теплых полах, а летом излишки тепла можно отправить в геотермальный контур. Это позволит снизить мощность теплового насоса.
    Ведь геотермальное тепло не возобновляется, так что со временем в толще грунта образовывается все увеличивающийся «холодный мешок». Например, в обычном геотермальном контуре на начало отопительного сезона температура составляет +5 градусов, а в конце -2С. При подогреве же начальная температура поднимается до +15 С, а к концу отопительного сезона не падает ниже +2С.

    Устройство самодельного солнечного коллектора

    Для уверенного в своих силах мастера собрать тепловой коллектор не составит труда. Можно начать с небольшого устройства для обеспечения горячей воды на даче, а в случае успешного эксперимента перейти к созданию полноценной солнечной станции.

    Плоский солнечный коллектор из металлических труб

    Самый простой в исполнении коллектор – плоский. Для его устройства понадобится:

    • сварочный аппарат;
    • трубы из нержавеющей стали или меди;
    • стальной лист;
    • закаленное стекло или поликарбонат;
    • деревянные доски для рамы;
    • негорючий утеплитель, способный выдержать нагретый до 200 градусов металл;
    • черная матовая краска, устойчивая к высоким температурам.

    Сборка солнечного коллектора довольно проста:

    1. Трубы привариваются к стальному листу – он выступает в роли адсорбера солнечной энергии, поэтому прилегание труб должно быть максимально плотным. Все красится в матовый черный цвет.
    2. На лист с трубами кладется рама так, чтобы трубы оказались с внутренней стороны. Просверливаются отверстия для входа и выхода труб. Укладывается утеплитель. Если используется гигроскопичный материал, нужно позаботиться о гидроизоляции – ведь намокших утеплитель больше не будет защищать трубы от охлаждения.
    3. Утеплитель фиксируется листом ОСБ, все стыки заполняются герметиком.
    4. Со стороны адсорбера кладется прозрачное стекло или поликарбонат с небольшим воздушным зазором. Оно служит для предотвращения остывание стального листа.
    5. Фиксировать стекло можно с помощью деревянных оконных штапиков, предварительно проложив герметик. Он предотвратит попадание холодного воздуха и защитит стекло от сжатия рамы при нагревании и охлаждении.

    Для полноценного функционирования коллектора понадобится накопительный бак. Его можно сделать из пластиковой бочки, утепленной снаружи, в которой спиралью уложен теплообменник, соединенный с солнечным коллектором. Вход нагретой воды должен располагаться сверху, а выход холодной – снизу.

    Важно правильно разместить бак и коллектор. Чтобы обеспечить естественную циркуляцию воды, бак должен находиться выше коллектора, а трубы – иметь постоянный наклон.

    Солнечный нагреватель из подручных материалов

    Если со сварочным аппаратом дружбу свести так и не удалось, можно сделать простой солнечный нагреватель из того, что под рукой. Например, из жестяных банок. Для этого в дне делаются отверстия, сами банки скрепляются друг с другом герметиком, на него же садятся в местах соединения с ПВХ-трубами. Красятся в черный цвет и укладываются в раму под стекло также, как и обычные трубы.

    Фасад дома из солнечных батарей

    Почему бы вместо обычного сайдинга не отделать дом чем-то полезным? Например, сделав с южной стороны на всю стену солнечный нагреватель.

    Такое решение позволит оптимизировать расходы на отопление сразу по двум направлениям – снизить затраты на энергоноситель и существенно сократить теплопотери за счет дополнительного утепления фасада.

    Устройство просто до безобразия и не требует специальных инструментов:

    • на утеплитель уложен окрашенный оцинкованный лист;
    • поверх уложена нержавеющая гофрированная труба, также выкрашенная в черный;
    • все прикрыто листами поликарбоната и зафиксировано алюминиевыми уголками.

    Если же и этот способ кажется сложным, на видео представлен вариант из жести, полипропиленовых труб и пленки. Куда уж проще!