Квантовый компьютер и обычный. Квантовый компьютер

2016 год уже на исходе, но его вклад в игроиндустрию останется с нами надолго. Во-первых, видеокарты из красного лагеря получили неожиданно удачное обновление в среднем ценовом диапазоне, ну а во-вторых NVIDIA в очередной раз доказала, что не зря занимает 70% рынка. Maxwell’ы были хороши, GTX 970 по праву считалась одной из лучших карточек за свои деньги, но Pascal - совсем другое дело.

Новое поколение железа в лице GTX 1080 и 1070 буквально похоронило результаты прошлогодних систем и рынок флагманского б/у железа, а «младшие» линейки в лице GTX 1060 и 1050 закрепили успех в более доступных сегментах. Владельцы GTX980Ti и прочих Titan’ов рыдают крокодильими слезами: их убер-пушки за много тысяч рублей разом потеряли 50% стоимости и 100% понтов. Сама NVIDIA заявляет, что 1080 быстрее, чем прошлогодний TitanX, 1070 легко «наваляет» 980Ti, а сравнительно бюджетная 1060 сделает больно владельцам всех остальных карточек.

Так ли это, откуда растут ноги высокой производительности и что с этим всем делать в преддверии праздников и внезапных финансовых радостей, а также чем именно себя порадовать, можно узнать в этой длинной и немного занудной статье.

Компанию Nvidia можно любить или… не любить, но отрицать то, что именно она в данный момент является лидером в области видеокартостроения станет только попаданец из альтернативной вселенной. Так как Vega от AMD ещё не анонсирована, флагманские RX’ы на Polaris’е мы так и не увидели, а R9 Fury с её 4 Гб экспериментальной памяти откровенно не может считаться перспективной карточкой (VR и 4K, всё же, захотят чуть больше, чем у неё есть) - имеем что имеем. Пока 1080 Ti и условные RX 490, RX Fury и RX 580 являются лишь слухами да ожиданиями, у нас с вами есть время разобраться в текущей линейке NVIDIA и посмотреть, чего достигла компания за последние годы.

Бардак и история происхождения Pascal’я

NVIDIA регулярно даёт поводы «не любить себя». История с GTX 970 и её «3.5 Гб памяти», «NVIDIA, Fuck you!» от Линуса Торвальдса, полная порнография в линейках десктопной графики, отказ от работы с бесплатной и куда более распространённой системой FreeSync в пользу своей проприетарщины… В общем, поводов хватает. Один из самых раздражающих лично меня - это то, что было с прошлыми двумя поколениями видеокарт. Если брать грубую характеристику, то «современные» графические процессоры пошли со времён поддержки DX10. А если искать «дедушку» 10-й серии сегодня, то начало современной архитектуры будет в районе 400-й серии видеоускорителей и архитектуры Fermi. Именно в нём окончательно сформировалась идея «блочной» конструкции из т.н. «ядер CUDA» в терминологии NVIDIA.

Fermi

Если видеокарты 8000-й, 9000-й и 200-й серий были первыми шагами в освоение самого понятия, «современной архитектуры» с универсальными шейдерными процессорами (как у AMD, да), то 400-я серия уже была максимально похожа на то, что мы видим в какой-нибудь 1070. Да, у Fermi остался небольшой Legacy-костыль от прошлых поколений: шейдерный блок работал на удвоенной частоте ядра, отвечавшего за расчёт геометрии, но общая картинка у какой-нибудь GTX 480 не сильно отличается от какой-нибудь 780-й, мультипроцессоры SM объединены в кластеры, кластеры общаются через общий кеш с контроллерами памяти, а результаты работы выводит общий для кластера блок растеризации:


Блок-схема процессора GF100, использовавшегося в GTX 480.

В 500-й серии был всё тот же Fermi, чуть улучшенный «внутри» и с меньшим количеством брака, так что топовые решения получили 512 CUDA-ядер вместо 480 у предыдущего поколения. Визуально же блок-схемы вообще кажутся близнецами:


GF110 - сердце GTX 580.

Кое-где поднарастили частоты, чуть изменили дизайн самого чипа, никакой революции не было. Всё те же 40 нм техпроцесс и 1.5 ГБ видеопамяти на 384-битной шине.

Kepler

С приходом архитектуры Kepler изменилось многое. Можно сказать, что именно это поколение дало видеокартам NVIDIA тот вектор развития, который привёл к возникновению текущих моделей. Изменилась не только архитектура GPU, но и сама кухня разработки нового железа внутри NVIDIA. Если Fermi был направлен на поиск решения, которое обеспечит высокую производительность, то Kepler сделал ставку на энергоэффективность, разумное использование ресурсов, высокие частоты и простоту оптимизации игрового движка под возможности высокопроизводительной архитектуры.

В дизайне GPU были произведены серьёзные изменения: за основу взяли не «флагманский» GF100 / GF110, а «бюджетный» GF104 / GF114, использовавшейся в одной из самых популярных карточек того времени - GTX 460.


Общая архитектура процессора стала проще за счёт использования всего двух больших блоков с четырьмя унифицированными модулями шейдерных мультипроцессоров. Выглядела разводка новых флагманов примерно так:


GK104, установленный в GTX 680.

Как вы видите, каждый из вычислительных блоков существенно прибавил в весе относительно прошлой архитектуры, и был назван SMX. Сравните строение блока с тем, что изображено выше, в разделе Fermi.


Мультипроцессор SMX графического процессора GK104

Шестисотая серия не имела видеокарт на полноценном процессоре, содержащем шесть блоков вычислительных модулей, флагманом была GTX 680 с установленным GK104, а круче неё - только «двухголовая» 690-я, на которой было разведено просто два процессора со всей необходимой обвязкой и памятью. Спустя год флагман GTX 680 с незначительными изменениями превратился в GTX 770, а венцом эволюции архитектуры Kepler стали видеокарты на базе кристалла GK110: GTX Titan и Titan Z, 780Ti и обычная 780. Внутри - всё те же 28 нанометров, единственное качественное улучшение (которое НЕ досталось консьюмерским видеокартам на базе GK110) - производительность с операциями двойной точности.

Maxwell

Первой видеокартой на архитектуре Maxwell стала… NVIDIA GTX 750Ti. Чуть позже появились её обрезки в лице GTX 750 и 745 (поставлялась только как встроенное решение), и на момент появления младшие карточки реально встряхнули рынок недорогих видеоускорителей. Новая архитектура обкатывалась на чипе GK107: крохотном кусочке будущих флагманов с огромными радиаторами и пугающей ценой. Выглядел он примерно так:


Да, всего один вычислительный блок, но насколько сложнее он устроен, нежели у предшественника, сравните сами:


Вместо крупного блока SMX, который использовался как базовый «строительный кирпичик» в создании GPU используются новые, более компактные блоки SMM. Базовые вычислительные блоки Kepler’а были хороши, но страдали от плохой загрузки мощностей - банальный голод инструкций: раскидать инструкции по большому количеству исполнительных элементов система не могла. Примерно те же проблемы были у Pentium 4: мощность простаивала, а ошибка в предсказании ветвлений стоила очень дорого. В Maxwell’е каждый вычислительный модуль разделили на четыре части, выделив каждой из них собственный буфер инструкций и планировщик варпов - однотипных операций над группой потоков. В результате эффективность выросла, а сами графические процессоры стали гибче, чем их предшественники, а самое главное - ценой малой крови и достаточно простого кристалла отработали новую архитектуру. История развивается по спирали, хе-хе.

Больше всего от нововведений выиграли мобильные решения: площадь кристалла выросла на четверть, а количество исполнительных блоков мультипроцессоров - почти вдвое. Как назло, именно 700-я и 800-я серии устроили основной бардак в классификации. Внутри одной только 700-й встречались видеокарты на архитектурах Kepler, Maxwell и даже Fermi! Именно поэтому десктопные Maxwell’ы, чтобы отстраниться от мешанины в предыдущих поколениях, получили общую серию 900, от которой впоследствии отпочковались мобильные карточки GTX 9xx M.

Pascal - логическое развитие архитектуры Maxwell

То, что было заложено в Kepler’е и продолжено в поколении Maxwell осталось и в Pascal’ях: первые потребительские видеокарты выпущены на базе не самого крупного чипа GP104, который состоит из четырёх кластеров обработки графики. Полноразмерный, шестикластерный GP100 достался дорогущему полупрофессиональному GPU под маркой TITAN X. Впрочем, даже «обрезанная» 1080 зажигает так, что прошлым поколениям становится дурно.

Улучшение производительности

Основа основ

Maxwell стал фундаментом новой архитектуры, диаграмма сравнимых процессоров (GM104 и GP104) выглядит почти одинаково, основное отличие - количество упакованных в кластеры мультипроцессоров. В Kepler’е (700-е поколение) было два больших мультипроцессора SMX, которые разделили на 4 части каждый в Maxwell’е, снабдив необходимой обвязкой (сменив название на SMM). В Pascal’е к имеющимся восьми в блоке добавили ещё два, так что их стало 10, а аббревиатуру в очередной раз перебили: теперь единичные мультипроцессоры вновь называются SM.


В остальном - полное визуальное сходство. Правда, внутри изменений стало ещё больше.

Двигатель прогресса

Изменений внутри блока мультипроцессоров неприлично много. Дабы не вдаваться в совсем уж занудные подробности того, что переделали, как оптимизировали и как было раньше, опишу изменения совсем коротко, а то некоторые и так уже зевают.

Перво-наперво Pascal’ям поправили ту часть, которая отвечает за геометрическую составляющую картинки. Это необходимо для мультимониторных конфигураций и работы с VR-шлемами: при должной поддержке со стороны игрового движка (а усилиями NVIDIA эта поддержка быстро появится) видеокарта может один раз посчитать геометрию и получить несколько проекций геометрии для каждого из экранов. Это существенно снижает нагрузку в VR не только в области работы с треугольниками (тут прирост просто двукратный), но и в работе с пиксельной составляющей.

Условная 980Ti будет считать геометрию дважды (для каждого глаза), а затем заполнять текстурами и выполнять пост-обработку для каждого из изображений, обработав в сумме порядка 4.2 миллиона точек, из которых реально использоваться будет около 70%, остальное будет отрезано или попадёт в область, которая попросту не отображается для каждого из глаз.

1080 обработает геометрию единожды, а пиксели, которые не попадут в итоговое изображение просто не будут рассчитываться.


С пиксельной составляющей всё, на самом деле, ещё круче. Так как наращивание пропускной способности памяти можно вести только по двум фронтам (увеличение частоты и пропускной способности за такт), и оба способа стоят денег, а «голод» GPU по части памяти всё явственней выражен с годами из-за роста разрешения и развития VR остаётся улучшать «бесплатные» методы увеличения пропускной способности. Если нельзя расширить шину и поднять частоту - надо сжать данные. В предыдущих поколениях аппаратное сжатие уже было внедрено, но в Pascal его вывели на новый уровень. Опять же, обойдёмся без скучной математики, и возьмём готовый пример от NVIDIA. Слева - Maxwell, справа - Pascal, залиты розовым цветом те точки, чья цветовая составляющая подвергалась сжатию без потерь качества.


Вместо передачи конкретных тайлов 8х8 точек, в памяти находится «средний» цвет + матрица отклонений от него, такие данные занимает от ½ до ⅛ объёма исходных. В реальных задачах нагрузка на подсистему памяти снизилась от 10 до 30%, в зависимости от количества градиентов и равномерности заливок в сложных сценах на экране.


Этого инженерам показалось мало, и для флагманской видеокарты (GTX 1080) использована память с повышенной пропускной способностью: GDDR5X передаёт вдвое больше бит данных (не инструкций) за такт, и выдаёт в пике более 10 Гбит/с. Передача данных с такой сумасшедшей скоростью потребовала полностью новой топологии разводки памяти на плате, а в сумме эффективность работы с памятью выросла на 60-70% по сравнению со флагманами прошлого поколения.

Уменьшение задержек и простоя мощностей

Видеокарты давно занимаются не только обработкой графики, но и сопутствующими вычислениями. Физика часто привязана к кадрам анимации и замечательно параллелится, а значит намного эффективнее считается на GPU. Но самым большим генератором проблем за последнее время стала VR-индустрия. Многие игровые движки, методологии разработки и куча других технологий, используемых для работы с графикой просто не были рассчитаны на VR, случай перемещения камеры или изменения положения головы пользователя в процессе отрисовки кадра просто не обрабатывался. Если оставить всё как есть, то рассинхронизация видеопотока и ваших движений будет вызывать приступы морской болезни и попросту мешать погружению в игровой мир, а значит «неправильные» кадры просто приходится выбрасывать после отрисовки и начинать работу сначала. А это - новые задержки в выводе картинки на дисплей. Положительным образом на производительности это не сказывается.

В Pascal’е учли эту проблему и внедрили динамическую балансировку нагрузки и возможность асинхронных прерываний: теперь исполнительные блоки могут либо прервать текущую задачу (сохранив результаты работы в кеш) для обработки более срочных задач, либо попросту сбросить недорисованный кадр и заняться новым, значительно снижая задержки в формировании изображения. Основной бенефициар здесь, само собой, VR и игры, но и с расчётами общего назначения данная технология может помочь: симуляция столкновения частиц получила прирост производительности в 10-20%.

Boost 3.0

Автоматический разгон видеокарты NVIDIA получили достаточно давно, ещё в 700-м поколении на базе архитектуры Kepler. В Maxwell’е разгон улучшили, но он всё равно был мягко говоря так себе: да, видеокарта работала чуть быстрее, пока это позволял теплопакет, зашитые с завода дополнительные 20-30 мегагерц по ядру и 50-100 по памяти давали прирост, но небольшой. Работало это примерно так:


Даже если по температуре GPU был запас, производительность не росла. С приходом Pascal инженеры перетряхнули и это пыльное болото. Boost 3.0 работает по трём фронтам: анализ температуры, повышение тактовой частоты и повышение напряжения на кристалле. Теперь из GPU выжимаются все соки: стандартные драйвера NVIDIA этого не делают, а вот софт вендоров позволяет в один клик построить профилирующую кривую, которая будет учитывать качество конкретно вашего экземпляра видеокарты.

Одной из первых на этом поприще стала компания EVGA, её утилита Precision XOC имеет сертифицированный NVIDIA сканер, который последовательно перебирает весь диапазон температур, частот и напряжений, добиваясь максимальной производительности на всех режимах.

Добавьте сюда новый техпроцесс, высокоскоростную память, всяческие оптимизации и снижение теплопакета чипов, и результат будет просто неприличный. C 1500 «базовых» МГц у GTX 1060 можно выжать больше 2000 МГц, если попадётся хороший экземпляр, а вендор не облажается с охлаждением.

Улучшение качества картинки и восприятия игрового мира

Производительность увеличили по всем фронтам, но есть ряд моментов, в которых качественных изменений не было несколько лет: в качестве выводимой картинки. И речь идёт не о графических эффектах, их обеспечивают разработчики игр, а о том, что именно мы видем на мониторе и то, как выглядит игра для конечного потребителя.

Быстрая вертикальная синхронизация

Самая главная фишка Pascal’я - тройной буфер для вывода кадров, обеспечивающий одновременно сверхнизкие задержки в отрисовке и обеспечение вертикальной синхронизации. В одном буфере хранится выводимое изображение, в другом - последний отрисованный кадр, в третьем - рисуется текущий. Прощайте, горизонтальные полосы и разрывы кадров, здравствуй, высокая производительность. Задержек, которые устраивает классический V-Sync здесь нет (так как никто не сдерживает производительность видеокарты и она всегда рисует с максимально возможной частотой кадра), а на монитор отправляются только полностью сформированные кадры. Я думаю, что после нового года напишу отдельный большой пост про V-Sync, G-Sync, Free-Sync и вот этот новый алгоритм быстрой синхронизации от Nvidia, слишком уж много подробностей.

Нормальные скриншоты

Нет, те скрины, что есть сейчас - это просто позор. Почти все игры используют кучу технологий, чтобы картинка в движении поражала и захватывала дух, и скриншоты стали реальным кошмаром: вместо потрясающе реалистичной картинки, складывающейся из анимации, специальных эффектов, эксплуатирующих особенности человеческого зрения, вы видите какое-то угловатое непойми что со странными цветами и абсолютно безжизненной картинкой.

Новая технология NVIDIA Ansel решает проблему со скринами. Да, её имплементация требует интеграцию специального кода от разработчиков игр, но реальных манипуляций там минимум, а вот профит громадный. Ansel умеет ставить игру на паузу, передаёт управление камерой в ваши руки, а дальше - простор для творчества. Можно просто сделать кадр без GUI и полюбившемся вам ракурсе.


Можно отрисовать имеющуюся сцену в ультра-высоком разрешении, снимать 360-градусные панорамы, сшивать их в плоскость или оставлять в трёхмерном виде для просмотра в VR-шлеме. Сделать фотографию с 16 битами на канал, сохранить её в своеобразном RAW-файле, а дальше играть с экпозицией, балансом белого и прочими настройками так, что скриншоты вновь станут привлекательными. Ждём тонны крутого контента от фанатов игр через год-другой.

Обработка звука на видеокарте

Новые библиотеки NVIDIA Gameworks добавляют множество фич, доступных разработчикам. В основном они нацелены на VR и ускорение различных вычислений, а также повышение качества картинки, но одна из фич наиболее интересна и достойна упоминания. VRWorks Audio выводит работу со звуком на принципиально новый уровень, считая звук не по банальным усреднённым формулам, зависящим от расстояния и толщины препятствия, но выполняет полную трассировку звукового сигнала, со всеми отражениями от окружения, реверберацией и поглощением звука в различных материалах. У NVIDIA есть хороший видео-пример на тему того, как работает эта технология:


Смотреть лучше в наушниках

Чисто теоретически, ничто не мешает запускать такую симуляцию на Maxwell’е, но оптимизации по части асинхронного выполнения инструкций и новая система прерываний, заложенные в Pascal’ях, позволяет проводить расчёты, не сильно влияя на кадровую частоту.

Паскаль в сумме

Изменений, на самом деле, ещё больше, и многие из них настолько глубоко в архитектуре, что по каждому из них можно написать огромную статью. Ключевые новшества - улучшенный дизайн самих чипов, оптимизация на самом низком уровне в части геометрии и асинхронной работы с полной обработкой прерываний, множество фич, заточенных на работу с высокими разрешениями и VR, и, разумеется, безумные частоты, которые не снились прошлым поколениям видеокарт. Два года назад 780 Ti едва перешагнула рубеж в 1 ГГц, сегодня 1080 в ряде случаев работает на двух: и здесь заслуга не только в уменьшенном с 28 нм до 16 или 14 нм техпроцессе: многие вещи оптимизированы на самом низком уровне, начиная с дизайна транзисторов, заканчивая их топологией и обвязкой внутри самого чипа.

Для каждого отдельного случая

Линейка видеокарт NVIDIA 10-й серии получилась по-настоящему сбалансированной, и достаточно плотно покрывает все игровые юз-кейсы, от варианта «в стратегии и диаблу играть» до «хочу топ-игры в 4k». Игровые тесты выбраны по одной простой методике: охватить как можно больший диапазон испытаний как можно меньшим набором тестов. BF1 - отличный пример хорошей оптимизации и позволяет сравнить в одинаковых условиях производительность DX11 против DX12. DOOM выбран по той же причине, только позволяет сравнить OpenGL и Vulkan. Третий «Ведьмак» здесь выступает в роли так-себе-оптимизированной-игрушки, в которой максимальные настройки графики дают прикрутить любому флагману просто в силу говнокода. Он использует классический DX11, который проверен временем и отлично отработан в драйверах и знаком игроделам. Overwatch отдувается за все «турнирные» игры, в которых хорошо оптимизирован код, по факту интересен тем, насколько высок средний FPS в не сильно тяжёлой с графической точки зрения игре, заточенной на работу в «среднем» конфиге, доступном по всему миру.

Сразу дам некоторые общие комментарии: Vulkan очень прожорлив в плане видеопамяти, для него эта характеристика - один из главных показателей, и вы увидите отражение этому тезису в бенчмарках. DX12 на карточках AMD ведёт себя значительно лучше, чем у NVIDIA, если «зелёные» в среднем показывают просадку по FPS на новых API, то «красные», наоборот, прирост.

Младший дивизион

GTX 1050

Младшая NVIDIA (без букв Ti) не так интересна, как её заряженная сестрица с буквами Ti. Её удел - игровое решение для MOBA-игр, стратегий, турнирных шутеров и прочих игр, где детализация и качество картинки мало кого интересует, а стабильная частота кадров за минимальные деньги - то, что доктор прописал.


На всех картинках отсутствует частота ядра, потому что она индивидуальна для каждого экземпляра: 1050 без доп. питания может не гнаться, а её сестра с 6-pin разъёмом легко возьмёт условных 1.9 ГГц. По части питания и длины изображены наиболее популярные варианты, всегда можно найти видеокарту с другой схемой или другим охлаждением, которое не впишется в указанные «нормативы».

DOOM 2016 (1080p, ULTRA): OpenGL - 68 FPS, Vulkan - 55 FPS;
The Witcher 3: Wild Hunt (1080p, MAX, HairWorks Off): DX11 - 38 FPS;
Battlefield 1 (1080p, ULTRA): DX11 - 49 FPS, DX12 - 40 FPS;
Overwatch (1080p, ULTRA): DX11 - 93 FPS;

В GTX 1050 установлен графический процессор GP107, доставшийся ей от старшей карты с небольшой обрезкой функциональных блоков. 2 ГБ видеопамяти не дадут разгуляться, но для киберспортивных дисциплин и игры в какие-нибудь танки она отлично подойдёт, благо цена на младшую карточку начинается с 9.5 тысяч рублей. Дополнительное питание не требуется, видеокарте достаточно 75 Ватт, поступающих с материнской платы по слоту PCI-Express. Правда, в этом ценовом сегменте есть ещё и AMD Radeon RX460, который с теми же 2 ГБ памяти стоит дешевле, а по качеству работы почти не уступает, а за примерно те же деньги можно получить RX460, но в версии на 4 ГБ. Не то что бы они ему сильно помогали, но какой-никакой запас на будущее. Выбор вендора не так важен, можно брать то, что есть в наличии и не оттягивает карман лишней тысячей рублей, которую лучше потратить на заветные буквы Ti.

GTX 1050 Ti

Около 10 тысяч за обычную 1050 - неплохо, но за заряженную (или полноценную, называйте как хотите) версию просят не многим больше (в среднем, на 1-1.5 тысячи больше), а вот её начинка куда интереснее. К слову, вся серия 1050 выпускается не из обрезки / отбраковки «больших» чипов, которые не годятся для 1060, а как полностью самостоятельный продукт. У неё меньше техпроцесс (14 нм), другой завод (кристаллы выращивает фабрика Samsung), и есть крайне интересные экземпляры с доп. питанием: тепловой пакет и базовое потребление у неё всё те же 75 Вт, а вот разгонный потенциал и возможность выйти за рамки дозволенного - совсем другие.


Если вы продолжаете играть на разрешении FullHD (1920x1080), не планируете апгрейда, а ваше остальное железо в пределах 3-5 летней давности - отличный способ поднять производительность в игрушках малой кровью. Ориентироваться стоит на решения ASUS и MSI с дополнительным 6-пиновым питанием, неплохи варианты от Gigabyte, но цена уже не так радует.

DOOM 2016 (1080p, ULTRA): OpenGL - 83 FPS, Vulkan - 78 FPS;
The Witcher 3: Wild Hunt (1080p, MAX, HairWorks Off): DX11 - 44 FPS;
Battlefield 1 (1080p, ULTRA): DX11 - 58 FPS, DX12 - 50 FPS;
Overwatch (1080p, ULTRA): DX11 - 104 FPS.

Средний дивизион

Видеокарты 60-й линейки давно считались оптимальным выбором для тех, кто не хочет тратить много денег, и вместе с тем играть на высоких настройках графики во всё, что выйдет в ближайшие пару лет. Началось это ещё со времён GTX 260, у которой было две версии (попроще, 192 потоковых процессора, и пожирнее, 216 «камней»), продолжалось в 400, 500, и 700-м поколениях, и вот NVIDIA вновь попала в практически идеальное сочетание цены и качества. Вновь доступны две версии «середнячка»: GTX 1060 на 3 и 6 ГБ видеопамяти отличаются не только объёмом доступной оперативки, но и производительностью.

GTX 1060 3GB

Королева киберспорта. Умеренная цена, потрясающая производительность для FullHD (а в киберспорте редко используют разрешение выше: там результаты важнее красивостей), разумный объём памяти (3 ГБ, на минуточку, стояло два года назад во флагмане GTX 780 Ti, который стоил неприличных денег). В плане производительности младшая 1060 легко наваливает прошлогодней GTX 970 с приснопамятным 3.5 ГБ памяти, и легко таскает за уши позапрошлогодний суперфлагман 780 Ti.


DOOM 2016 (1080p, ULTRA): OpenGL - 117 FPS, Vulkan - 87 FPS;
The Witcher 3: Wild Hunt (1080p, MAX, HairWorks Off): DX11 - 70 FPS;
Battlefield 1 (1080p, ULTRA): DX11 - 92 FPS, DX12 - 85 FPS;
Overwatch (1080p, ULTRA): DX11 - 93 FPS.

Тут безусловный фаворит по соотношению цены и выхлопа - версия от MSI. Неплохие частоты, бесшумная система охлаждения и вменяемые габариты. За неё просят-то всего ничего, в районе 15 тысяч рублей.

GTX 1060 6GB

Шестигигабайтная версия - бюджетный билет в VR и высокие разрешения. Она не будет голодать по памяти, чуть быстрее во всех тестах и уверенно будет выигрывать у GTX 980 там, где прошлогодней видеокарте станет мало 4 ГБ видеопамяти.


DOOM 2016 (1080p, ULTRA): OpenGL - 117 FPS, Vulkan - 121 FPS;
The Witcher 3: Wild Hunt (1080p, MAX, HairWorks Off): DX11 - 73 FPS;
Battlefield 1 (1080p, ULTRA): DX11 - 94 FPS, DX12 - 90 FPS;
Overwatch (1080p, ULTRA): DX11 - 166 FPS.

Хочется ещё раз отметить поведение видеокарт при использовании API Vulkan. 1050 с 2 ГБ памяти - просадка по FPS. 1050 Ti с 4 ГБ - почти вровень. 1060 3 ГБ - просадка. 1060 6 Гб - рост результатов. Тенденция, думаю, понятна: для Vulkan надо 4+ ГБ видеопамяти.

Беда в том, что обе 1060 - видеокарты не маленькие. Вроде, и теплопакет разумный, и плата там реально небольшая, но многие вендоры решили просто унифицировать систему охлаждения между 1080, 1070 и 1060. У кого-то видеокарты в высоту 2 слота, но длиной 28+ сантиметров, кто-то сделал их короче, но толще (2.5 слота). Выбирайте внимательней.

К сожалению, дополнительные 3 ГБ видеопамяти и разблокированный вычислительный блок обойдутся вам в ~ 5-6 тысяч рублей сверху к цене 3-гиговой версии. В данном случае самые интересные варианты по цене и качеству у Palit. ASUS выпустил монструозные 28-сантиметровые системы охлаждения, которые лепит и на 1080, и на 1070, и на 1060, и такая видеокарта мало куда поместится, версии без заводского разгона стоят почти столько же, а выхлоп меньше, а за сравнительно компактные MSI просят больше, чем у конкурентов при примерно том же уровне качества и заводского разгона.

Высшая лига

Играть на все деньги в 2016 году сложновато. Да, 1080 - безумно крута, но перфекционисты и железячники знают, что NVIDIA СКРЫВАЕТ существование супер-флагмана 1080 Ti, который должен быть неимоверно крут. Первые спецификации уже просачиваются в сеть, и понятно, что зелёные ждут шага от красно-белых: какой-нибудь убер-пушки, которую моментально можно будет поставить на место новым королём 3D-графики, великой и могучей GTX 1080 Ti. Ну а пока имеем что имеем.

GTX 1070

Прошлогодние приключения мегапопулярной GTX 970 и её не-совсем-честных-4-гигабайт-памяти активно разбирались и обсасывались по всему интернету. Это не помешало ей стать самой популярной игровой видеокартой в мире. В преддверии смены года на календаре она удерживает первое место в Steam Hardware & Software Survey . Оно и понятно: сочетание цены и производительности было просто идеальным. И если вы пропустили прошлогодний апгрейд, а 1060 кажется вам недостаточно крутой - GTX 1070 ваш выбор.

Разрешения 2560х1440 и 3840х2160 видеокарта переваривает на ура. Система разгона Boost 3.0 постарается подкидывать дров тогда, когда возрастает нагрузка на GPU (то есть в самых тяжёлых сценах, когда FPS проседает под натиском спецэффектов), разгоняя процессор видеокарты до умопомрачительных 2100+ Мгц. Память легко получает 15-18% эффективной частоты сверх заводских показателей. Монструозная штука.


Внимание, все тесты проведены в 2.5k (2560x1440):

DOOM 2016 (1440p, ULTRA): OpenGL - 91 FPS, Vulkan - 78 FPS;
The Witcher 3: Wild Hunt (1440p, MAX, HairWorks Off): DX11 - 73 FPS;
Battlefield 1 (1440p, ULTRA): DX11 - 91 FPS, DX12 - 83 FPS;
Overwatch (1440p, ULTRA): DX11 - 142 FPS.

Понятное дело, вытянуть ультра-настройки в 4k и никогда не проседать ниже 60 кадров в секунду не под силу ни этой карточке, ни 1080, но играть на условных «высоких» настройках, отключив или немного снизив самые прожорливые фичи можно в полном разрешении, а в плане реальной производительности видеокарта легко задаёт жару даже прошлогодней 980 Ti, которая стоила почти вдвое дороже. Самый интересный вариант у Gigabyte: они ухитрились запихать полноценную 1070 в корпус ITX-стандарта. Спасибо скромному теплопакету и энергоэффективному дизайну. Цены на карточки стартуют с 29-30 тысяч рублей за вкусные варианты.

GTX 1080

Да, флагман не имеет букв Ti. Да, он использует не самый крупный GPU, доступный NVIDIA. Да, здесь нет крутейшей памяти HBM 2, а видеокарта не выглядит, как «Звезда смерти» или, в крайне случае, имперский крейсер класса «Звёздный разрушитель». И да, это самая крутая игровая видеокарта, которая сейчас есть. Одна одна берёт и запускает DOOM в разрешении 5k3k с 60 кадрами в секунду на ультра-настройках. Ей подвластны все новые игрушки, и ближайшие год-два она не будет испытывать проблем: пока новые технологии, заложенные в Pascal станут распространены, пока игровые движки научатся эффективно загружать имеющиеся ресурсы… Да, через пару лет мы будем говорить: «Вот, посмотрите на GTX 1260, пару лет назад для игры с такими настройками вам нужен был флагман», а пока - лучшая из лучших видеокарт доступна перед новым годом по весьма разумной цене.


Внимание, все тесты проведены в 4k (3840x2160):

DOOM 2016 (2160p, ULTRA): OpenGL - 54 FPS, Vulkan - 78 FPS;
The Witcher 3: Wild Hunt (2160p, MAX, HairWorks Off): DX11 - 55 FPS;
Battlefield 1 (2160p, ULTRA): DX11 - 65 FPS, DX12 - 59 FPS;
Overwatch (2160p, ULTRA): DX11 - 93 FPS.

Останется только решить: оно вам надо, или можно сэкономить и взять 1070. Играть на «ультре» или «высоких» настройках особой разницы нет, благо современные движки отлично рисуют картинку в высоком разрешении даже на средних настройках: в конце концов, у нас с вами не мыльные консоли, которые не могут обеспечить достаточно производительности для честного 4k и стабильных 60 кадров в секунду.

Если отбросить самые недорогие варианты, то лучшее сочетание цены и качества снова будет у Palit в варианте GameRock (около 43-45 тысяч рублей): да, система охлаждения «толстая», 2.5 слота, но видеокарта короче конкурентов, а пару из 1080 ставят редко. SLI потихоньку умирает, и даже живительная инъекция высокоскоростных мостов его не особо выручает. Вариант ASUS ROG неплох, если у вас установлено множество доп. девайсов и перекрывать лишние слоты расширения вам не хочется: их видеокарта в толщину ровно 2 слота, но требует 29 сантиметров свободного пространства от задней стенки до корзины с жёсткими дисками. Интересно, осилят ли Gigabyte выпуск и этого монстра в ITX-формате?

Итоги

Новые видеокарты NVIDIA просто похоронили рынок Б/У железа. На нём выживает только GTX 970, которую можно урвать за 10-12 тысяч рублей. Потенциальным покупателям подержанных 7970 и R9 280 часто некуда её поставить и попросту не прокормить, а многие варианты со вторичного рынка попросту бесперспективны, и как дешёвый апгрейд на пару лет вперёд никуда не годятся: памяти мало, новые технологии не поддерживаются. Прелесть нового поколения видеокарт именно в том, что даже неоптимизированные под них игрушки идут значительно бодрее, чем на ветеранах GPU-чартов прошлых лет, а что будет через год, когда движки игр научатся использовать всю силу новых технологий - и представить сложно.

GTX 1050 и 1050Ti

Увы, рекомендовать покупку самого недорогого Pascal’я я не могу. RX 460 обычно продаётся на тысячу-другую дешевле, и если у вас бюджет ограничен настолько, что вы берёте видеокарту «на последние» то Radeon объективно является более интересным вложением денег. С другой стороны, 1050 немного быстрее, и если цены в вашем городе на эти две видеокарты почти не отличаются - берите её.

1050Ti, в свою очередь, отличный вариант для тех, кому сюжет и геймплей важнее наворотов и реалистичных волос в носу. У неё нет бутылочного горлышка в виде 2 ГБ видеопамяти, она не «стухнет» через год. Можете доложить денег на неё - сделайте это. Ведьмак на высоких настройках, GTA V, DOOM, BF 1 - без проблем. Да, придётся отказаться от ряда улучшений, типа сверхдлинных теней, сложной тесселяции или «дорогого» просчёта самозатенения моделей ограниченной трассировкой лучей, но в пылу битвы вы забудете про эти красивости после 10 минут игры, а стабильные 50-60 кадров в секунду дадут куда больший эффект погружения, чем нервные скачки от 25 до 40, но с настройками на «максимум».

Если у вас стоит какая-нибудь Radeon 7850, GTX 760 или младше, видеокарты с 2 ГБ видеопамяти и меньше - можете смело менять.

GTX 1060

Младшая 1060 порадует тех, кому кадровая частота от 100 FPS важнее, чем графические навороты. Вместе с тем, она позволит комфортно играть во все вышедшие игрушки в FullHD разрешении с выоскими или максимальными настройками и стабильными 60 кадрами в секунду, да и по цене сильно отличается от всего, что идёт после неё. Старшая 1060 с 6 гигабайтами памяти - бескомпромиссное решение для FullHD с запасом производительности на год-другой, знакомства с VR и вполне приемлемый кандидат для игры в высоких разрешениях на средних настройках.

Менять вашу GTX 970 на GTX 1060 смысла нет, потерпит ещё годик. А вот надоевшие 960, 770, 780, R9 280X и более древние агрегаты можно смело обновлять до 1060.

Топ-сегмент: GTX 1070 и 1080

1070 вряд ли станет такой же популярной, как GTX 970 (всё же, у большинства пользователей цикл обновления железа - раз в два года), но по соотношению цены и качества, безусловно, достойное продолжение 70-й линейки. Она просто перемалывает игры на мэйнстримовом разерешнии 1080р, легко справляется с 2560х1440, выдерживает мытарства неоптимизированных 21 к 9, и вполне способна отображать 4k, пусть и не на максимальных настройках.


Да, SLI бывает и таким.

Говорим «давай, до свиданья» всяким 780 Ti, R9 390X и прочим прошлогодним 980-м, особенно если хотим играть в высоком разрешении. И, да, это лучший вариант для любителей собрать адскую коробчонку в формате Mini-ITX и пугать гостей 4k-играми на 60-70 дюймовом телевизоре, которые запускаются на компьютере размером с кофеварку.
gtx 1050 история видеокарт Добавить метки

Компания NVIDIA готовит к выпуску новую серию игровых видеокарт, которую откроет GeForce GTX 1080. Эта модель станет первым продуктом игрового класса на базе архитектуры Pascal. GeForce GTX 1080 принесет ряд технологических инноваций, о которых мы поговорим в данной статье. Материал будет носить теоретический характер, в нем рассмотрены архитектурные особенности и новые возможности GeForce GTX 1080. Тестирование и сравнение с другими видеокартами появится позже.

Стремительный прогресс в миниатюризации кремниевых чипов в последние годы сбавил обороты. Компания Intel даже отказалась от стратегии «Тик-так», которая предусматривала регулярный переход на более тонкий техпроцесс. На рынке графических ускорителей в рамках одного 28-нм техпроцесса сменилось несколько поколений продуктов NVIDIA и AMD. Отчасти это пошло на пользу и заставило производителей больше внимания уделять развитию архитектуры. Этот качественный переход в свое время был хорошо заметен при переходе с Kepler на архитектуру Maxwell, когда новое поколение оказалось более производительным и энергоэффективным без увеличения количества транзисторов или даже при уменьшении размеров кристаллов. К примеру, GeForce GTX 980 базируется на более компактном чипе GM204, что не мешает видеокарте демонстрировать более высокую производительность относительно GeForce GTX 780 Ti с более сложным чипом GK110.

Новое поколение GeForce получит как новую архитектуру, так и более тонкий техпроцесс. И GeForce GTX 1080 во многих отношениях является первопроходцем. Это первый графический ускоритель на архитектуре Pascal с графическим процессором GP104, который выполнен по нормам техпроцесса 16-нм FinFET. Среди важных инноваций компания NVIDIA отмечает еще быструю память стандарта GDDR5X. Новые технологические особенности позволяют поднять частоты до рекордного уровня, определяя новый уровень «мастерства». А новые игровые технологии расширяют возможности GeForce, особенно в области работы с VR-контентом. Это пять основных особенностей, которые выделяет производитель в новом продукте.

Стоит отметить, что изначально первопроходцем архитектуры Pascal стал специализированный ускоритель вычислений Tesla P100. Он базируется на процессоре GP100. Но поскольку продукт ориентирован на совершенно другую сферу применения, то именно GeForce GTX 1080 является пионером среди настольных графических ускорителей.

GPU GP104 наследник GM204 , поэтому при изучении GeForce GTX 1080 можно отталкиваться от GeForce GTX 980, хотя новичок быстрее GeForce GTX 980 Ti и GeForce GTX Titan X. Процессоры Pascal используют кластерную структуру по типу предшественников, где кластер GPC (Graphics Processing Cluster) по сути является самостоятельным вычислительным блоком. В основе GP100 шесть кластеров, у GP104 четыре кластера, а следующий чип GP106 должен получить два кластера. Четыре GPC делают новый GPU GP104 максимально близким к GM204. Да и блок-схема этого чипа тоже напоминает старый процессор.

Различия в структуре проявляются при более внимательном изучении. В прошлом поколении кластер включал в себя четыре крупных мультипроцессорных блока SMM. У GP104 младшие исполнительные блоки сгруппированы в пять мультипроцессорных блоков SM. Каждый такой крупный блок обработки данных связан со своим блоком обработки геометрии Polymorph Engine, которых теперь 20 вместо 16 у GM204.

Один SM разбит на четыре массива обработки данных со своей управляющей логикой, и это тоже аналогично структуре старых GPU. И в обоих случаях мультипроцессор оперируют 128 потоковыми ядрами (CUDA cores). В SM есть 96 КБ общей кэш-памяти, отдельный текстурный кэш и восемь текстурных блоков. В итоге имеем конфигурацию из 2560 потоковых процессоров и 160 текстурных блоков. У нового процессора 64 блока ROP и кэш-память L2 объемом 2 МБ — тут отличий от GM204 нет.

Стало больше контроллеров памяти, в Pascal изменилась вся подсистема работы с памятью. Вместо четырех 64-битных контроллеров реализовано восемь 32-битных, что обеспечивает разрядность шины памяти в 256 бит. После успешного GeForce GTX 980 такая шина памяти в топовом продукте уже не удивляет. При этом эффективность шины у GeForce GTX 1080 выше за счет новых алгоритмов сжатия данных. Также рост пропускной способности обеспечивают микросхемы нового стандарта GDDR5X, у которых эффективное значение обмена данных эквивалентно частоте 10 ГГц. Привычная память GDDR5 ограничивалась частотами до 7 ГГц. Объем видеобуфера повышен до 8 ГБ.

Благодаря новому техпроцессу GP104 компактнее GM204 при большем количестве вычислительных блоков. При этом новый процессор имеет больше возможностей для повышения частот. Изначально для него установлено базовое значение в 1607 МГц при среднем Boost Clock 1733 МГц. Пиковые значения частоты еще выше. С такими рекордными частотами GeForce GTX 1080 укладывается в TDP 180 Вт, что немного выше показателей GeForce GTX 980. А ведь новичок быстрее топовой Ti-версии, у которой TDP заметно больше.

Для наглядного сравнения сведем в одной таблице характеристики GeForce GTX 1080 и топовых видеокарт предыдущих поколений.

Видеоадаптер GeForce GTX 1080 GeForce GTX Titan X GeForce GTX 980 Ti GeForce GTX 980 GeForce GTX 780 Ti
Ядро GP104 GM200 GM200 GM204 GK110
Количество транзисторов, млн. шт 7200 8000 8000 5200 7100
Техпроцесс, нм 16 28 28 28 28
Площадь ядра, кв. мм 314 601 601 398 561
Количество потоковых процессоров 2560 3072 2816 2048 2880
Количество текстурных блоков 160 192 176 128 240
Количество блоков рендеринга 64 96 96 64 48
Частота ядра, МГц 1607-1733 1000-1075 1000-1075 1126-1216 875-926
Шина памяти, бит 256 386 386 256 384
Тип памяти GDDR5X GDDR5 GDDR5 GDDR5 GDDR5
Частота памяти, МГц 10010 7010 7010 7010 7010
Объём памяти, МБ 8192 12288 6144 4096 3072
Поддерживаемая версия DirectX 12.1 12.1 12.1 12.1 12.0
Интерфейс PCI-E 3.0 PCI-E 3.0 PCI-E 3.0 PCI-E 3.0 PCI-E 3.0
Мощность, Вт 180 250 250 165 250

Видеокарты NVIDIA среднего и старшего уровня давно используют технологию GPU Boost, которая повышает частоту графического процессора до тех пор, пока он не превысит ограничения по температуре или мощности. Минимальным значением для 3D-режима является базовая частота, но зачастую при обычной игровой нагрузке частоты всегда выше. Новые GeForce получили улучшенную технологию GPU Boost 3.0 с более гибким алгоритмом изменения частоты в зависимости от питающего напряжения в режиме частотного ускорения. У GPU Boost 2.0 фиксированная разница между базовым значением и частотой Turbo. GPU Boost 3.0 позволяет использовать разное смещение частот, что позволит лучше раскрыть потенциал GPU. Теоретически при автоматическом изменении параметров в Boost-режиме с повышением или понижением напряжения частота будет изменяться нелинейно, в каких-то точках дельта Boost может быть больше, чем это было бы с GPU Boost старой версии. Новые возможности гибкой регулировки Boost будут доступны пользователям. Свежая версия утилиты EVGA Precision уже поддерживает GeForce GTX 1080, среди ее возможностей автоматический сканер с тестом стабильности, который может формировать нелинейную кривую частот Boost для разных напряжений. Переход на новый техпроцесс и оптимизация структуры ядра позволили добиться столь значительного частотного ускорения, что максимальный Boost относительно заявленных значений может повышаться до уровня 2 ГГц.

С момента появления GDDR5 компания NVIDIA работала над следующим поколением скоростной памяти. Результатом взаимодействия с разработчиками памяти стало появление GDDR5X со скоростью передачи данных 10 Гбит/с. Работа со столь быстрой памятью выдвигает новые требования к разводке электрических цепей. Поэтому были переработаны линии передачи данных между GPU и микросхемами памяти, изменена структура самого чипа. Все это позволяет эффективно работать со сверхбыстрым видеобуфером. Среди преимуществ GDDR5X и более низкое рабочее напряжение на уровне 1,35 В.

При эффективной частоте памяти в 10000 МГц увеличение пропускной способности относительно привычных для нынешнего поколения 7012 МГц почти 43%. Но этим преимущества Pascal не ограничиваются. GeForce поддерживают специальные алгоритмы сжатия данных в памяти, что позволяет более эффективно использовать кэш и передавать больше данных при той же пропускной способности. Поддерживается несколько методик, в зависимости от типа данных выбирается свой алгоритм сжатия. Важную роль играет алгоритм сжатия цвета delta color compression. Благодаря ему кодируется не цвет каждого отдельного пикселя, а разница между пикселями при последовательной передаче данных. Вычисляется некий усредненный цвет тайла и данные о смещении цвета для каждого пикселя этого тайла.

Такое сжатие обеспечивает высокую продуктивность Maxwell, но эффективность Pascal еще выше. GPU GP104 дополнительно поддерживает новые алгоритмы с еще большим сжатием для случаев, когда разница между цветом минимальна.

В качестве примера NVIDIA приводит два слайда из игры Project CARS. Розовым цветом на них закрашены те тайлы, где применялось сжатие данных. Верхний слайд отражает работу сжатия на Maxwell, нижний на Pascal.

Как видим, сжатие у Pascal применяется и к тем зонам, где оно не выполнено на Maxwell. В итоге почти весь кадр подвергся сжатию. Конечно, эффективность работы таких алгоритмов зависит от каждой конкретной сцены. По данным NVIDIA разница в этой эффективности между GeForce GTX 1080 и GeForce GTX 980 варьируется от 11% до 28%. Если взять за среднее значение величину 20%, то с учетом повышения частот памяти результирующий рост пропускной способности составляет около 70%.

Новое поколения GeForce поддерживает асинхронные вычисления Async Compute с улучшенным использованием вычислительных ресурсов для разных типов задач. В современных играх GPU одновременно с рендерингом изображения могут выполнять и другие задачи. Это может быть расчет физики тел, постообработка изображения и специальная техника асинхронного искажения времени (Asynchronous Time Warp) для режима виртуальной реальности. При выполнении разных задач не всегда задействуются все вычислительные блоки, и выполнение каждой задачи может занимать разное время. К примеру, если неграфические вычисления выполняются дольше графических, то все равно идет ожидание завершения каждого процесса для переключения к новым задачам. При этом часть ресурсов GPU простаивает. В Pascal появилась динамическая балансировка загрузки. Если одна задача выполнилась раньше, то освободившиеся ресурсы подключаются на выполнение другой задачи.

Таким образом удается избежать простоев и поднять общую производительность при комбинированной нагрузке на GPU. При подобной нагрузке важную роль играет и скорость переключения между задачами. Pascal поддерживает прерывание задач на разных уровнях для максимально быстрого переключения. При получении новой команды процессор прерывает задачи на уровнях обработки пикселей и потоков, сохраняя их состояние для дальнейшего завершения, и вычислительные блоки принимаются за новую задачу. Pascal поддерживает прерывание на уровне отдельных инструкций, Maxwell и Kepler только на уровне потоков.

Прерывание на разных уровнях позволяет точнее определить момент переключения задачи. Это важно для техники Asynchronous Time Warp, которая деформирует уже сформированное изображения перед его выводом для коррекции в соответствии с положением головы. При Asynchronous Time Warp нужно быстрое упреждение для переключения строго перед выводом кадра, иначе возможны артефакты в виде «дрожания» картинки. Pascal справляется с этой задачей лучше всего.

В Pascal появилась аппаратная поддержка технологии мультипроецирования, которая позволяет работать одновременно с разными проекциями изображения. Специальный блок Simultaneous Multi-Projection внутри PolyMorph Engine отвечает за формирование разных проекций при обработке одного потока геометрии. Этот блок обрабатывает геометрию одновременно для 16 проекций с одним или двумя центрами перспективы. Это не требует повторной обработки геометрии и позволяет реплицировать данные до 32 раз (16 проекций на две точки).

Благодаря технологии можно получить корректное изображение на мультимониторных конфигурациях. При использовании трех мониторов изображение рендерится для одной проекции. Если крайние мониторы повернуты под небольшим углом, чтобы создать эффект окружения, то вы получите некорректную геометрию в боковых зонах. Мультипроецирование создает корректное изображение, формирую правильные проекцию в соответствии с углом положения монитора. Единственным условием для такого режима является поддержка широкого FOV самим приложением.

Такая методика формирования изображения позволяет наиболее эффективно использовать изогнутые панели, а также открывает возможности для корректного рендеринга на других устройствах вывода изображения, даже на сферическом экране.

Данная технология расширяет возможности Pascal при формировании стерео-изображения и в системах виртуальной реальности (VR). В режиме стерео формируется два изображения одной сцены для каждого глаза. Аппаратная поддержка Simultaneous Multi-Projection позволяет создать каждую проекцию для своего глаза при единоразовой обработке геометрии с использованием технологии Single Pass Stereo. И это значительно ускоряет работу в таком режиме.

В системах VR пользователь использует очки со специальными линзами, которые вносят определенные искажения. Для компенсации изображение немного деформируется по краям, а пользователь в итоге наблюдает откорректированную линзой картинку. Но изначально видеокарта обрисовывает изображение в обычной плоской проекции, а часть периферийного изображения потом отпадает.

Технология Lens Matched Shading может разбить изображение на четыре квадранта и сделать последующую выборку пикселей. То есть картинка изначально проецируется на несколько плоскостей, которые симулируют изогнутую форму линзы.

Итоговое изображения рендерится в меньшем разрешении, ненужные зоны отсекаются. Изначально в Oculus Rift на один глаз идет изображение 1,1 мегапиксель, но первоначальной плоской проекции оно рендерится в разрешении 2,1 мегапиксель. Благодаря Lens Matched Shading начальное изображение будет 1,4 мегапикселя. Это позволяет значительно увеличить производительность в VR-режиме.

Виртуальная реальность является перспективным направлением, которое расширит опыт взаимодействия с виртуальной средой и подарит игрокам новые ощущения. NVIDIA активно поддерживает развитие VR. Одним из сдерживающих факторов для популяризации VR-систем являются высокие требования к производительности графического ускорителя. Специальные технологии и аппаратная оптимизация способствует качественному росту быстродействия именно в этом направлении. Компания выпустила комплексный набор VRWorks из специальных API, библиотек и программных движков. В его состав входят в том числе средства работы с Single Pass Stereo и Lens Matched Shading. Сюда также входит технология MultiRes Shading, которая позволяет изменять разрешение в боковых зонах при VR-рендеринге с целью снижения нагрузки.

Эффект присутствия связан не только с визуальными ощущениями, но и с другими чувствами. Звук тоже играет важную роль. Поэтому NVIDIA разработала технологию VRWorks Audio для воссоздания реалистичного звука с учетом положения источника звуковых волн и отражения их от поверхностей. Технология использует движок OptiX, который изначально использовался для просчета освещения по методу трассировки лучей. Отслеживается путь звуковых «лучей» от источника до отражающих поверхностей и обратно. Этот прогрессивный метод позволит воссоздавать реалистичный звук с учетом акустических особенностей виртуального помещения и с наложением отраженных звуков. Подробнее об NVIDIA VRWorks Audio в видеоролике:

Усилить эффект погружения можно за счет взаимодействия с виртуальной средой. Сейчас интерактивность реализована за счет позиционного слежения и отслеживания ручных контроллеров. На базе PhysX создан механизм, который определяет, будет ли взаимодействие при виртуальном контакте с тем или иным объектом. Также с PhysX можно реализовать достоверные физически эффекты при воздействии на виртуальную среду.

В новом поколении видеокарт появилась поддержка VR SLI. Этот режим предусматривает, что обработкой изображения для каждого глаза в VR-режиме займется отдельный GPU. Такой способ исключает задержки при работе SLI и обеспечивает лучшую производительность. Поддержка VR SLI будет внедрена в движки Unreal Engine 4 и Unity, что позволяет надеяться на большую популяризацию этой технологии по мере роста доступности систем виртуальной реальности.

Простая технология SLI тоже обновилась. Старшие видеокарты GeForce всегда имели два разъема под мостики SLI. Этими мостики нужны для коммутации всех видеокарт друг с другом в режимах 3-Way и 4-Way SLI. Теперь в простом SLI две видеокарты могут использовать сразу два интерфейса обмена данными, повышая общую пропускную способность.

Новый способ коммутации требует новых сдвоенных мостиков SLI HB. Поддержка совместного режима при подключении по простому одинарному мостику сохраняется. Сдвоенный мостик рекомендуется для высоких разрешений — 4К, 5К и мультимониторных систем. Скоростной мостик рекомендуется также при 2K с монитором 120 Гц и быстрее. В более простых режимах можно обойтись мостиком старого образца.

У GeForce GTX 1080 повышена скорость самого интерфейса — с 400 МГц до 650 МГц. Она может быть реализована с новыми мостиками и с некоторыми версиями старого формата. Увеличение скорости обмена данными в SLI обеспечивает более плавную смену кадров и некоторый рост производительности в тяжелых режимах.

Возможности рендеринга на нескольких GPU в DirectX 12 были расширены. Поддерживается два основных типа работы с такими конфигурациями: Multi Display Adapter (MDA) и Linked Display Adapter (LDA). Первый позволяет работать совместно разным GPU, в том числе объединяя потенциал интегрированной и внешней графики. LDA рассчитан для совместного использования аналогичных решений. Implicit LDA по сути используется в SLI, благодаря чему обеспечивается широкая совместимость с приложениями на программном уровне. Explicit LDA и MDA дают больше возможностей разработчикам, но обеспечение такого режима в каждом приложении ложится на их плечи.

Также стоит отметить, что официально заявлено о поддержке SLI только в конфигурации из двух GeForce GTX 1080. Более сложные конфигурации теоретически возможны в режимах Explicit LDA и MDA. Интересно, что при этом NVIDIA предлагает разблокировать режим 3-Way и 4-Way при помощи специального кода для энтузиастов. Для этого нужно будет сделать специальный запрос на сайте компании по идентификатору своего GPU.

В GPU GP104 появилась поддержка Fast Sync. Эта технология является альтернативой включенной или выключенной вертикальной синхронизации. В динамичных играх (особенно многопользовательских) высокая частота кадров обеспечивает максимальную отзывчивость на действия пользователя. Но при превышении частоты обновления монитора возможны артефакты в виде разрывов изображения. Это нейтрализует вертикальная синхронизация, что обеспечивает попутно и некоторые задержки. Fast Sync позволяет выводить максимальное количество кадров без вероятных разрывов. Это обеспечивается аппаратными изменениями в конвейере вывода изображения. Вместо традиционного двойного буфера используется тройной, и выводится только полностью отрендеренный кадр.

С Fast Sync можно играть на обычном мониторе при 100-200 fps без визуальных артефактов и с минимальными задержками, как в обычном режиме с отключенным VSync. Ниже отражены результаты исследования задержек при выводе изображения в разных режимах в игре Counter-Strike: Global Offensive.

Как видим, небольшая разница между Fast Sync и выключенным VSync есть, но она не идет ни в какое сравнение относительно задержек вывода кадров с активным VSync.

Если же говорить не о максимальной отзывчивости, а о максимальной плавности изображения, то она обеспечивается технологией G-Sync, которая реализуется в связке со специальными мониторами. G-Sync обеспечивает полную аппаратную синхронизацию выводимых кадров с частотой обновления экрана.

GeForce GTX 1080 может выводить изображение через DVI, HDMI и DisplayPort. Поддерживается DisplayPort 1.2 и HDMI 2.0b с HDCP 2.2, но видеокарта готова и к DisplayPort 1.3/1.4. В случае использования последних возможен вывод изображения 4K при 120 Гц или 8K (7680x4320) при 60 Гц через два кабеля DisplayPort 1.3. Для сравнения нужно отметить, что GeForce GTX 980 может выводить только 5120x3200 при коммутации через два кабеля DisplayPort.

Стандартная версия GeForce GTX 1080 оснащается тремя портами DisplayPort, одним HDMI и одним Dual-Link DVI.

Процессор GP104 получил улучшенный блок декодирования/кодирования видео с поддержкой стандарта PlayReady 3.0 (SL3000) и аппаратного декодирования HEVC с поддержкой высококачественного видео 4K/8K. Полные возможности GeForce GTX 1080 в сравнении с GeForce GTX 980 отражены в нижней таблице.

В списке инноваций GeForce GTX 1080 поддержка контента и дисплеев HDR. Этот стандарт является крупный прорывом в технологиях, обеспечивая охват видимого цветового пространства в 75% вместо 33% у RGB при глубине цвета 10/12 бит. Такие дисплеи отображают больше оттенков, имеют выше яркость и глубже контраст, позволяя рассмотреть больше тонких цветовых нюансов. На данный момент уже выпускаются телевизоры с поддержкой HDR, мониторы ожидаются в следующем году.

Кроме декодирования HDR поддерживается и аппаратное кодирование, что позволит записывать видео такого стандарта. А в скором времени будет добавлена функция HDR-стриминга для игровой консоли Shield.

NVIDIA работает с разработчиками над тем, чтобы привнести HDR в сегмент компьютерных игр. В результате поддержку HDR получат Rise of the Tomb Raide , Tom Clancy"s The Division , The Talos Principle , Paragon, вторая часть Shadow Warrior и другие игры.

Современный гейминг меняется, у игроков проявляются новые интересы и желание взглянуть на любимую игру под новым углом. Иногда обычный скриншот превращается в нечто большее, чем простой кадр из игры. А с NVIDIA Ansel каждый скриншот может стать необычным. Это новая технология для захвата изображений с набором специальных возможностей. Ansel позволяет накладывать фильтры, улучшать изображение, использовать свободную камеру и создавать панорамы. Для полной функциональности нужна поддержка со стороны приложения. Для этого в Ansel предусмотрена простая интеграция. К примеру, для интеграции Ansel в The Witcher 3 разработчики добавили лишь 150 строчек кода, а для логической игры Witness понадобилось 40 строчек кода.

Ansel переводит игру в режим паузы и далее позволяет выполнять разные операции. Например, можно менять камеру и выбирать любой ракурс. Какие-то ограничения возможны только в случае, если разработчики намеренно ограничат движение свободной камеры.

Можно повышать разрешение конечного изображения и увеличивать уровень LOD, чтобы добиться максимальной четкости всех деталей. Повышение разрешение сочетается с дополнительным сглаживанием для лучшего эффекта.

Более того, Ansel позволяет создавать гигантские изображения вплоть до 4,5 гигапикселей. Такие изображения сшиваются из отдельных фрагментов, что выполняется на аппаратном уровне. Также на итоговое изображение можно наложить различные пост-эффекты. Изображение можно сохранить а формате RAW или в EXR с 16-битным кодированием цвета. Это даст широкие возможности для последующей работы с ним.

Можно создавать стереопанормы и 360-градусные снимки, которые потом можно рассматривать в очках виртуальной реальности.

Есть огромное множество эффектов, которые можно применять к захватываемому изображению — зернистость, Bloom, сепия, линзовые эффекты и много другого, вплоть до создания картинки с эффектом рыбьего глаза. Широкие возможности Ansel поражают. Игрок получает такие возможности, которых ранее просто не было.

После изучения архитектурных особенностей и новых технологий нужно взглянуть на саму видеокарту GeForce GTX 1080. Референсная версия внешне напоминает предыдущие модели со слегка обновленным дизайном и более резкими очертаниями.

Обратная стороны защищена двумя пластинами, что напоминает «бронирование» GeForce GTX 980.

Общая конструкция охлаждения осталась без изменений. Кулер работает по принципу турбины. Есть крупное основание, ребристый радиатор для охлаждения GPU и дополнительный радиатор в районе узла питания для лучшего охлаждения силовых элементов.

Все остальные нюансы мы рассмотрим в отдельной статье, где заодно проведем и сравнительное тестирование. Если говорить о предварительных оценках самого производителя, то NVIDIA сравнивает новинку с GeForce GTX 980 и говорит о преимуществе около 70% в простых играх и разрыве более чем в 2,5 раза в VR-режиме. Разница с GeForce GTX 980 Ti будет поменьше, но о каких-то конкретных значениям можно будет говорить после практических тестов.

Выводы

Настало время подвести итоги нашего теоретического знакомства с GeForce GTX 1080. Эта видеокарта на данный момент является самым продвинутым в технологическом плане продуктом среди графических ускорителей. В GeForce GTX 1080 впервые используется 16-нм процессор архитектуры Pascal и новая память GDDR5X. Сама архитектура является развитием Maxwell с оптимизациями и новыми функциями для DirectX 12. Архитектурные улучшения в значительной мере усиливаются за счет существенного роста частот GPU и памяти. Очень значительный прогресс в сфере VR-рендеринга благодаря новым технологиям, ускоряющим работу в этом режиме. Прогрессивным нововведением является поддержка HDR-дисплеев и соответствующего контента. Благодаря новому блоку обработки видео еще больше возможностей по воспроизведению и записи видео высокого разрешения, включая работу с форматом HDR. Любители сверхдинамичных мультиплеерных игр оценят технологию Fast Sync. Ценителей виртуальных красот порадуют возможности Ansel. Покупая GeForce GTX 1080, вы в итоге получите не просто самый быстрый на данный момент видеоускоритель, но и самый функциональный.

Официально данная модель станет доступна покупателям после 27 мая. Первыми в продажу поступят версии референсного дизайна Founders Edition. Они будут иметь более высокий ценник. Чуть позже выйдут нестандартные варианты, стоимость которых на $100 ниже. Ну а мы к моменту появления GeForce GTX 1080 на отечественном рынке постараемся в рамках большого тестирования в полной мере раскрыть их потенциал в сравнении с существующими топовыми видеокартами.

На прошлой неделе Дженсен Хуанг (Jen-Hsun Huang) вышел на сцену и официально представил видеокарты Nvidia GeForce GTX 1070 и GTX 1080 . Помимо презентации самих ускорителей и их разгонного потенциала, демонстрировались новые технологии, примененные в архитектуре Pascal . Именно им и посвящен этот материал. Конечно, будут рассмотрены не все новшества. О некоторых новых и/или обновленных технологиях будет рассказано в обзоре GTX 1080, который появится уже в совсем скором времени.

Pascal и GPU GP 104

Первое и самое важное изменение в Pascal – уход от 28-нм техпроцесса, который использовался в потребительских видеокартах с момента выхода GeForce GTX 600-серии, с марта 2012 года. Архитектура Pascal основывается на новом 16-нм FinFET техпроцессе производства TSMC, и с переходом на более тонкую литографию приходят впечатляющие улучшения в области энергопотребления и масштабирования производительности.

Но прежде всего более тонкий техпроцесс, зачастую, позволяет нарастить частоту. В «стоке» видеокарта работает более чем при 1700 МГц. Также, судя по многочисленным обзорам, GTX 1080 способен разгоняться до 2100+ МГц, а это референс, еще и серьезно ограниченный по питанию.

Стоит отметить, что не только уменьшение техпроцесса позволило так поднять частоту. По словам Иона Альбена (Jonah Alben) – старшего вице-президента подразделения GPU Engeneering, после перехода на 16-нм FinFET техпроцесс новые графические процессоры могли работать на частоте около 1325 МГц, и команда Nvidia долгое время работала над наращиванием частот. Итогом работы стала GTX 1080, которая функционирует при 1733 МГц.

Как же удалось добиться такого уровня улучшения тактовой частоты и производительности относительно архитектуры Maxwell? Pascal сочетает в себе несколько интересных нововведений, позволяющих существенно увеличить эффективность.

Оптимизации позволили не только увеличить тактовую частоту, но и эффективность CUDA-ядер GPU GP104 относительно предшественника – GM204. Доказательство тому – прирост производительности в 70% (относительно GTX 980) и это еще на не до конца доведенных до ума драйверах.

Одно из изменений можно рассмотреть на блок-схеме, которая представлена выше. Теперь в одном кластере GPC заместь четырех SM-s (simultaneous multiprocessor) блоков их пять.

PolyMorph Engine 4.0

Существенное дополнение в самом кристалле GPU лишь одно – добавление нового модуля к PolyMorph Engine. Добавился синхронный блок мультипроекцирования. Новый блок находится в самом конце тракта обработки кадра и создает несколько схем проекции из одного потока геометрии.

Если не вдаваться в подробности, а там все очень сложно, то новый блок берет обработку геометрии на себя, не всю, но существенную часть. Таким образом нагрузка на другие блоки графического процессора уменьшается. Помимо этого, PolyMorph помогает формировать картинку под корректными углами на мультимониторных конфигурациях, но об этом позже.