Перманганатная окисляемость морской воды. Ионообменные смолы для очистки воды от органики

Это самый древний метод определения окисляемости. Основан на окислении проб воды перманганатом калия в кислом растворе (метод Кубеля). На примере окисления фенола процесс можно изобразить схемой:

4 MnO 4 - + C 6 H 6 O + 4 H + = 6 CO 2 + 4 Mn 2+ + 5 H 2 O

Итак, берут точно отмеренное количество КMnO 4 и проводят окисление. Затем избыток перманганата связывают щавелевой кислотой:

2 MnO 4 - + 5 H 2 C 2 O 4 + 6 H+ = Mn 2+ + 10 CO 2 + 8 H 2 O

Затем избыток щавелевой кислоты оттитровывают перманганатом калия до слабо-розовой окраски.

Этот метод используется главным образом при анализе питьевых и слабо загрязненных поверхностных вод с окисляемостью < 10мг О/л. С большей ошибкой можно определять перманганатную окисляемость при окисляемости < 100 мг О/л (при этом пробу предварительно разбавляют).

КMnO 4 является более сильным окислителем, чем K 2 Cr 2 O 7 , но в более мягких условиях окисления перманганатом (меньше концентрация, время кипячения) многие органические вещества (спирты, кетоны, жирные кислоты, аминокислоты) совсем не подвергаются воздействию КMnO 4 или окисляются в незначительной степени, Другие вещества: фенолы, малеиновая кислота практически полностью окисляются до CO 2 и H 2 O. При наличии в пробе смеси подобных загрязнений, очевидно, невозможно по расходу перманганата сделать вывод о действительном содержании органических примесей.

Перманганатная окисляемость составляет 40 – 60% от истинной окисляемости органических веществ пробы. В последнее время перманганатная окисляемость все чаще уступает свое место определению более точного показателя ХПК.


Биохимическое потребление кислорода (БПК)

Рассмотренные методы позволяют определять общее содержание органических загрязнений вне зависимости от того, могут ли они окисляться микроорганизмами в природных условиях. Для оценки самоочищающей способности водного объекта нужно знать содержание в воде биохимически мягких веществ, т.е. веществ, легко разлагаемых микроорганизмами.

БПК – количество элементного кислорода в мг, требуемое для окисления находящихся в 1 л воды органических веществ в аэробных условиях в результате проходящих в воде биохимических процессов. Таким образом, БПК отражает суммарное содержание биохимически окисляющихся органических примесей. Поскольку органические примеси частично окисляются микроорганизмами до СО 2 (с расходом кислорода), а частично расходуются на создание биомассы, БПК всегда меньше ХПК, даже если в воде присутствуют только легкоокисляемые органические вещества.

Рассчитаем удельную теоретическую ХПК (ТПК уд.) казеина:

С 8 H 12 O 3 N 2 + 16 O = 8 CO 2 + 2 NH 3 + 3 H 2 O

М=184 г - 16×16 г

1 мг - ТПК уд.

ТПК уд. = 16×16/184 = 1,39 мг О/мг казеина

Рассчитаем удельную теоретическую БПК (с учетом размножения клеток микроорганизмов):

С 8 H 12 O 3 N 2 + 6 O = С 5 H 7 O 2 N + NH 3 + 3 CO 2 + H 2 O

М=184 г - 6×16 г

1 мг - БПК уд.

БПК уд. = 6×16/184 = 0,522

Как видно из приведенного примера, ТПК(ХПК) > БПК.

Существует два метода экспериментального определения БПК:

Метод разбавления заключается в том, что за процессом биохимического окисления органических веществ следят по убыли количества кислорода, введенного в склянку с пробой, в процессе инкубации этой пробы. Для этого измеряют содержание кислорода в пробе на 3,5,10 и т.д. день.

Название метода происходит из того, что исследуемую воду разбавляют чистой, не содержащей органических примесей, водой так, чтобы содержащегося в ней кислорода хватило для полного окисления всех органических веществ. Для этого используют результаты предварительного определения ХПК, условно принимая, что БПК » ½ ХПК. Так находят ориентировочное БПК (БПК ориент.).

В воде содержится около 9 мг/л О 2 . Чтобы после инкубации можно было с достаточной точностью определить оставшийся кислород, его должно остаться не менее 4 ÷ 5 мг/л. Следовательно, БПК ориент. делят на , т.е. на 5 или 4 и находят необходимую степень разбавления.

После разбавления воду разливают по склянкам и в одной из них определяют содержание О 2 . Остальные склянки инкубируют в темноте без доступа кислорода. Определив содержание О 2 в определенный день, по убыли кислорода находят БПК. В зависимости от продолжительности инкубации проб при определении БПК различают БПК 5 (биохимическое потребление кислорода за 5 суток) и БПК полн. (полное биохимическое потребление кислорода).

Определение БПК 5 в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды (см. табл.). Величины БПК 5 используются также при контроле эффективности работы очистных сооружений.

Таблица.Величины БПК 5 в водоемах с различной степенью загрязненности

Установлено, что при загрязнении водоемов бытовыми стокам с относительно постоянным составом и свойствам в конце пятого дня инкубации наступает 70%-ное окисление органических веществ, которые могут быть окислены биохимически. Поэтому раньше было оправдано определение БПК 5 = 70% от БПК полн. . Сейчас, когда в водные объекты с промышленными сточными водами попадают вещества, трудно поддающиеся биохимическому окислению, или вещества, тормозящие биохимическое окисление органических примесей, определение БПК 5 теряет смысл, т.к. иногда к 5 суткам процесс биохимического окисления только начинается (лаг-фаза может быть обусловлена постепенной адаптацией микроорганизмов к токсикантам). Поэтому службы мониторинга переходят от определения БПК 5 к определению БПК полн. .

Полным биохимическим потреблением кислорода (БПК полн.) считается количество кислорода, требуемое для окисления органических примесей до начала процессов нитрификации. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без существенной примеси производственных) определяют БПК 20 , считая, что эта величина близка к БПК полн.

Для более корректного определения БПК полн содержание кислорода в склянках с пробой определяют на 5, 7, 10 и т.д. день. Когда изменение содержания кислорода прекратится, определяют общий расход кислорода и величину БПК полн. Для предотвращения расходования кислорода на окисление аммонийного азота в этом случае в пробы добавляют инигибитор – подавитель нитрификации.

Второй метод заключается в том, что за процессом биохимического окисления наблюдают по убыли содержания органических веществ в пробе. Мерой содержания органических веществ служит ХПК, поэтому БПК определяют по разности между результатами определения ХПК до и после инкубации.

При биохимическом разложении органических веществ они частично окисляются до СО 2 и Н 2 О, а частично превращаются в биомассу. Если количество органических веществ в начале биохимического окисления выразить тем количеством кислорода, которое требуется для полного его окисления, т.е. значением ХПК жидкой и твердой фаз в начале инкубации (ХПК н.ж. +ХПК н.т.), а содержание органических веществ в конце процесса (неокислившихся и превратившихся в биомассу) также представить в виде необходимого на их окисление кислорода (ХПК к.ж. +ХПК к.т.), то разность и будет равна БПК:

БПК =(ХПК н.ж. +ХПК н.т.) - (ХПК к.ж. +ХПК к.т.),

Для подавления нитрификации также вводят ингибитор (например, этилентиокарбамид).

Если в начале и в конце инкубации определять ХПК отдельно для жидкой и твердой фаз, то можно рассчитать следующие показатели, характеризующие способность исследуемой воды к самоочищению:

А = ХПК к.ж. /ХПК н.ж. - выражает какая часть присутствующих в пробе органических веществ вообще не подвергается биохимическому окислению.

Б = – характеризует количество биомассы, которая образуется в процессе биохимического окисления (прирост биомассы).

В = БПК t /ХПК н.ж. – характеризует относительное количество биохимически мягких веществ.

Время t выбирают по кривой БПК – время (см. рис.2), выделив наиболее круто поднимающийся участок.

Г = – характеризует относительное количество биохимически жестких органических веществ.

Сумма показателей А+Б+В+Г = 1.

Рис.2. Кинетика БПК.

Понятия «биохимически мягкий» и «биохимически жесткий» тесно связаны со скоростью биохимического окисления . Процесс биохимического окисления протекает в соответствии с закономерностями реакций I порядка, т.е. скорость окисления пропорциональна количеству оставшегося неокисленного вещества.

Органические вещества по своей сути посторонние в составе воды. Они имеют различное происхождение и пути поступления. Чаще всего в воде они представлены растворёнными кислотами из торфяных почв. Об этом можно судить по интенсивности цвета воды от желтоватого до бурого. Появление органики в воде возможно и в результате жизнедеятельности живых организмов и растений, а так же процессов их разложения.


Органические вещества могут быть не только вредными или неприятными, но и опасными для здоровья. Они нарушают работу эндокринной системы. К тому же эти примеси могут содержать различные болезнетворные бактерии и вирусы, а так же токсичные вещества - диоксины. Отравление диоксинами приводит к тому, что подавляется иммунитет и нарушается нормальный процесс деления клеток. А значит органические загрязнения могут значительно способствовать возникновению онкологических заболеваний.

Однако негативное влияние высокого уровня перманганатной окисляемости обуславливается не только этим. Зачастую органика мешает протеканию процессов очистки воды от других примесей. Например, она связывает на молекулярном уровне растворённые вещества, такие как железо и марганец. К тому же для окисления органические продукты первыми потребляют кислород из воды, тем самым для окисления железа или марганца его уже практически не остаётся. Повышенное значение показателя перманганатной окисляемости указывает на присутствие органики.

Вещества органического происхождения не дают долгое время окисляться двухвалентному железу и марганцу. Это опасно тем, что из растворённых форм они переходят в нерастворённую, уже пройдя . Таким образом тяжёлые металлы могут выпадать в осадок как в бытовой технике, так и в организме человека.

Очистка воды от органики из колодца

Выведение органики из воды способствует более активному удалению из неё других примесей. В этом случае для колодезной воды используют фильтры комплексной очистки. Специально подобранная фильтрующая среда удаляет растворённые и взвешенные органические вещества при значениях ПМО до 20 мг-О2/л. Регенерация фильтров производится солевым раствором.

При значениях окисляемости более 20 мг-О2/л в исходную воду необходимо дозировать раствор коагулянта. Этот процесс способствует выведению органических загрязнений из воды тем, что связывает их молекулы между собой и они слипаются в крупные хлопья. Концентрация и объём коагулирующего раствора подбирается индивидуально по значениям ПМО.

Если по каким-то причинам обслуживание фильтра комплексной очистки затруднительно, компания «Комплексные решения» предлагает вариант очистки воды с использованием накопительных баков. Ручная или автоматическая дозация коагулянта способствует быстрому слипанию органики в хлопья и выпадению их в осадок. Вместе с этим из воды устраняются излишки связанного с органикой железа и марганца. Далее из накопительного бака вода подаётся насосной станцией на промывную Титановую мембрану. Органические вещества в виде хлопьев задерживаются на её поверхности и сбрасываются в канализацию при обратной промывке.

Готовые решения, предлагаемые к установке:

Очистка воды от органики из скважины

Наличие органики в скважинах - редкое явление, так как там слишком мало кислорода. В то же время, в скважинах, глубина которых не превышает 10 метров - это вполне возможно. Особенность этих источников такова, что поступление органических веществ в воду перекрывается водоупорными пластами глин. Однако состав залегающих грунтовых слоёв может быть разнообразным. Для неглубоких скважин характерно поступление органики с водой из гумусовых почв. С осадками и стоками органические вещества также могут попадать в неё с поверхности земли. Глубокие скважины в этом отношении наиболее защищены. Единственной проблемой здесь может быть нарушение структуры залегания грунтов вследствие вмешательства человека или природного фактора. В этом случае следы органических соединений могут означать поступление из вышележащих слоёв, либо соседних, где производится сброс хозяйственно-бытовых отходов.

Перманганатная окисляемость характеризует легкоокисляемую часть органических веществ (преимущественно алифатику). В среднем 1 мг кислорода перманганатной окисляемости соответствует 1 мг углерода органического вещества. Соотношение перманганатной и бихроматной окисляемости позволяет судить о природе органических веществ в воде. Чем меньше это отношение, тем больше в воде трудноокисляемой ароматики.

Определение перманганатной окисляемости.

Принцип метода.

Окисление проводится раствором перманганата калия в сернокислой среде при кипячении:

MnO 4 - + 8H + + 5e -  Mn 2+ + 4H 2 O

Избыток перманганата калия после кипячения определяют иодометрически. Метод рекомендуется для анализа пресных вод, содержащих не более 300 мг Cl - /л.

Реактивы:

1. Раствор перманганата калия, С (KMnO 4) = 0,01 М

2. Раствор тиосульфата натрия Na 2 S 2 O 3 . 5H 2 O, C (Na 2 S 2 O 3) = 0,01 М

3. Раствор крахмала, 0,5%-ный

4. Иодистый калий кристаллический

5. Раствор серной кислоты H 2 SO 4 , х.ч., 1:3.

Оборудование и посуда:

1. Электроплитки с закрытой спиралью - 2 шт.;

2. Колбы конические 250 мл - 2 шт.;

3. Обратные холодильники - 2 шт.;

4. Пипетки 100 мл -1 шт.;

10 мл - 1 шт.;

15 мл - 1 шт.;

5 мл - 1 шт.

5. Бюретка 25 мл - 1 шт.;

6. Капилляры

Ход определения.

В коническую колбу на 250 мл наливают 100 мл исследуемой воды, добавляют 2-3 капилляра, приливают 5 мл H 2 SO 4 (1:3) и нагревают. В самом начале кипения в колбу добавляют пипеткой 20 мл 0,01 М раствора KMnO 4 , закрывают колбу пробкой-холодильником и после этого кипятят 10 минут. Если во время кипячения розовая окраска в колбе, свойственная перманганату, исчезает, определение надо повторить вновь, разбавив исследуемую воду бидистиллятом. По окончании кипячения пробу охлаждают, добавляют около 0,5 г иодистого калия и выделившийся иод титруют 0,01 М раствором тиосульфата, пока жидкость не приобретет слабо-желтый цвет. Затем добавляют 1 мл раствора крахмала и продолжают титрование до исчезновения синей окраски раствора. Аналогично проводят холостое определение с 100 мл бидистиллята.

Величина перманганатной окисляемости в мг О 2 /л рассчитывается по формуле:

,

где М - молярность раствора тиосульфата; n 1 - количество миллилитров раствора тиосульфата, пошедшего на титрование холостой пробы; n 2 - количество миллилитров раствора тиосульфата, пошедшего на титрование пробы; V - объем пробы воды, мл.

Бихроматная окисляемость.

Принцип метода.

Окисление бихроматом калия протекает в кислой среде в присутствии катализатора:

Cr 2 O 7 2- + 14H + + 6e -  2 Cr 3+ + 7H 2 O

Избыток бихромата калия, добавленный к пробе, титруют раствором железоаммонийных квасцов. Метод предназначен для анализа пресных вод с содержанием органических веществ, соответствующих 5 и более мг О 2 /л.

Реактивы:

1. Дважды дистиллированная вода

2. Раствор бихромата калия C (K 2 Cr 2 O 7) = 0,025 М

3. Раствор железоаммонийных квасцов, 0,025 М

4. Раствор сернокислого серебра в концентрированной серной кислоте

5. Раствор серной кислоты 1:1

6. Раствор N-фенилантраниловой кислоты

Оборудование и посуда:

1. Электроплитка с закрытой спиралью - 2 шт.

2. Штативы - 2 шт.

3. Колбы круглодонные объемом 250 мл с пришлифованными обратными холодильниками - 2 комплекта

4. Пипетки 20 мл - 1 шт.;

10 мл - 1 шт.;

25 мл - 1 шт.;

5. Мерные цилиндры 50 мл - 1 шт.;

100 мл - 1 шт.

6 . Бюретка 25 мл - 1 шт.

7. Капилляры

Ход определения.

Пробу исследуемой воды объемом 20 мл или меньший ее объем, доведенный бидистиллятом до 20 мл, помещают в колбу со шлифом для кипячения. Прибавляют 20 мл 0,025 М раствора бихромата, осторожно приливают 30 мл раствора сернокислого серебра и для равномерного кипения бросают 2-3 стеклянных капилляра. К колбе присоединяют обратный холодильник и смесь равномерно кипит 2 часа. После охлаждения снимают холодильник, промывают его стенки 25 мл бидистиллята, переносят в коническую колбу на 750 мл и смесь вновь охлаждают. Затем прибавляют 15 капель раствора индикатора и избыток непрореагировавшего бихромата калия титруют раствором железоаммонийных квасцов до перехода окраски индикатора из красно-синей в синевато-зеленую, перемешивая раствор энергичным взбалтыванием.

Таким же образом производят холостое определение.

Величину бихроматной окисляемости в мг О 2 /л рассчитывают по формуле:

,

где М - молярность раствора железоаммонийных квасцов; n 1 - количество миллилитров раствора железоаммонийных квасцов, пошедшего на титрование холостой пробы; n 2 - количество миллилитров раствора железоаммонийных квасцов, пошедшего на титрование пробы; V - объем пробы воды, мл.

Теоретическая часть

Природная вода является сложной системой, в которой присутствует множество других веществ – растворенные газы (О 2 , N 2 , СО 2), соли в виде ионов Na + , K + , Mg 2+ , Ca 2+ , Cl – , SO 4 2– , HCO 3 – и др., а также живые организмы.

Гидросфера служит естественным аккумулятором большинства загрязняющих веществ, поступающих в атмосферу и литосферу. Это связано с большой растворяющей способностью воды, с гидрологическим циклом воды в природе, а также с тем, что водоемы являются конечным пунктом на пути движения различных сточных вод.

В природную воду могут попадать отходы двух видов (рис. 2):

Природные – органические остатки природного происхождения (экскременты животных, растительные остатки и т.д.);

Антропогенные – отходы, связанные с деятельностью человека. Основными источниками загрязнения водоемов служат предприятия черной и цветной металлургии, химической, целлюлозно-бумажной, легкой промышленности, бытовые сточные воды и т.д.

Важным показателем качества воды является количество растворенного в ней кислорода. В прямой зависимости от его содержания находится жизнь микроорганизмов (см. рис. 2) и способность вод к самоочищению. Живущие в воде аэробные бактерии с помощью кислорода окисляют органические вещества, попавшие в воду, так как они служат им пищей и удовлетворяют энергетические запросы. Органические вещества, способные окисляться в воде бактериями, называют биоразложимыми.

Процесс окисления достаточно сложен. В результате его органические загрязнители исчезают, а содержащиеся в них элементы С, Н, О, N, S, Р превращаются в окисленные формы - H 2 O , CO 2 , PO 4 3– , SO 4 2– , NO 3 – (неопасные для живых организмов вещества).

Если в воде находится большое количество загрязняющих веществ, то окислительные реакции снижают количество растворенного в воде кислорода и на смену аэробным бактериям приходят анаэробные (см. рис. 2). Анаэробные бактерии разлагают органические вещества до NH 3 , PH 3 , H 2 S и CH 4 . Продукты разложения токсичны для всех живых организмов и обладают неприятным запахом.

Количество растворенного О 2 , необходимое для окисления всех биоразложимых органических отходов в воде, называют биохимической потребностью в кислороде (БПК). Величину БПК определяют следующим образом: пробу насыщают кислородом и определяют его количество (при t = 20 0 С) непосредственно после насыщения и через 5 (или 20 суток). Разность между этими значениями соответствует БПК 5 (или БПК 20). Также определяют полное биохимической потребление кислорода - БПК ПОЛН.

Максимальная растворимость кислорода в воде при 20 0 С равна ~ 9 мг/дм 3 , а БПК ПОЛН (по стандартам качества питьевой воды) не должна превышать 3 мгО 2 / дм 3 Н 2 О. Чем больше БПК, тем сильнее загрязнена вода органическими и другими биоразложимыми веществами.

В воде появляется все больше веществ, которые не поддаются биологическому разложению (например, органические растворители) и поэтому не фиксируются показателем БПК. Также определение БПК в природной воде является сложной и трудоемкой задачей.

Поэтому пользуются более простыми косвенными методами. Для окисления загрязняющих веществ используют химические окислители – перманганат калия (KMnO 4) или бихромат калия (K 2 Cr 2 O 7), израсходованное количество которых переcчитывают на эквивалентное количество кислорода (О 2).

Соответственно различают перманганатную и бихроматную окисляемость.

Окисляемость – это условная величина, характеризующая загрязненность воды различными легко окисляющимися веществами, главным образом органического происхождения. Она показывает, сколько миллиграммов кислорода необходимо для окисления загрязнителей, содержащихся в одном литре воды (мгО 2 / дм 3 Н 2 О). В чистых родниковых и артезианских водах окисляемость обычно составляет 1,0–2,0 мгО 2 /дм 3 . В воде открытых водоемов окисляемость повышается до 6-8 мгО 2 /дм 3 H 2 O, достигая большего значения в водах болотного происхождения.

Перманганатная окисляемость является характеристикой питьевых вод, а также вод рек, защищенных от попадания каких-либо промышленных отходов.

Вода считается пригодной для хозяйственных и питьевых целей, если перманганатная окисляемость ее не превышает 5,0 мгО 2 / дм 3 Н 2 О (при t = 25 0 С).

При загрязнении вод промышленными стоками перманганатная окисляемость не отражает полного содержания органичес­ких загрязнений в воде. В этом случае определяют бихроматную окисляе­мость, которая называется химическим потреблением кислорода (ХПК).


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тема работы “Определение перманганатной окисляемости воды”.

Цель работы – исследование воды на содержание в ней органических загрязнителей.

Определение основано на том, что перманганат калия (KMnO 4), являясь сильным окислителем, в кислой среде реагирует с восстановителями (органические вещества, соли железа (II), нитраты и т.д.) в соответствии с уравнением:

MnO 4 – + 8Н + + 5ē = Mn 2 + + 4H 2 O (1)

фиолетовый бесцветный

Избыток KMnO 4 , оставшийся после окисления загрязнителей, реагирует с вводимой щавелевой кислотой (Н 2 С 2 О 4) по уравнению

2MnO 4 – + 5С 2 О 4 2– + 16Н + = 2Mn 2+ + 10СО 2 + 8H 2 O (2)

Не вступившую в реакцию (2) щавелевую кислоту оттитровывают перманганатом калия (KMnO 4) по реакции 1.

Выполнение опыта

1. Отмерьте цилиндром 100 см 3 исследуемой воды (V H 2 O ИССЛ) и перенесите ее в коническую колбу ем­костью 250 см 3 .

2. Добавьте к воде 5 см 3 раствора серной кислоты H 2 SO 4 (1:2).

3. Прилейте из бюретки 20 см 3 раствора перманганата калия концентрацией 0,01 моль-экв/дм 3 . Этот объем обозначим V 1 .

4. Накройте колбу воронкой, нагрейте до кипения и кипятите в течение 10 минут. При кипячении идет процесс окисления веществ-загрязнителей по уравнению (1), в результате чего раствор светлеет.

5. Снимите колбу с нагревательного прибора и добавьте в нее 20 см 3 раствора щавелевой кислоты концентрацией 0,01 моль-экв/дм 3 . Раствор обесцвечивается, так как щавелевая кислота реагирует с избытком KMnO 4 по уравнению (2).

6. Проведите титрование обесцвеченного горячего раствора с помощью раствора перманганата калия до появления устойчивой светло-розовой окраски.

Определите объем KMnO 4 , израсходованный на титрование, который обозначим как V 2 .

Таким образом, перманганат калия Вы использовали дважды, поэтому его общий объем V общ = V 1 + V 2 , т.к. KMnO 4 расходуется как на окисление органических загрязнителей воды, так и на окисление 20 см 3 щавелевой кислоты.

Для определения окисляемости необходимо учитывать расход перманганата калия на окисление только органических примесей воды. Поэтому отдельным опытом надо определить объем перманганата калия, необходимый для окисления 20 см 3 щавелевой кислоты.

Для этого проведите следующий эксперимент:

1. Отмерьте цилиндром 100 см 3 дистиллированной воды (V ДИС) и перенесите ее в коническую колбу емкостью 250 см 3 .

2. Добавьте к воде 5 см 3 H 2 SO 4 (1:3) и нагрейте раствор до 50-60 0 С.

3. Снимите колбу с нагревательного прибора.

4. Добавьте в колбу 20 см 3 раствора щавелевой кислоты концентрацией 0,01 моль-экв/дм 3 и титруйте раствором перманганата калия до устойчивой светло-розовой окраски.

Определите значение объема KMnO 4 (V 3), израсходованного на титрование этого раствора.

Запись результатов опыта

Перманганат калия является сильным окислителем, поэтому концентрация его раствора изменяется со временем и ее необходимо рассчитать, используя закон эквивалентов:

Перманганатную окисляемость воды Х (мгО 2 /дм 3 H 2 O) рассчитайте по формуле:

где 8 – эквивалентная масса кислорода

В выводе дайте заключение о качестве исследуемой воды относительно содержания в ней органических загрязнителей по рассчитанному значению окисляемости.


Вопросы для самоконтроля знаний

1. Какой качественный состав имеет природная вода?

2. Назовите источники и способы загрязнения природных водоемов.

3. Дайте понятие аэробных и анаэробных бактерий и охарактеризуйте их роль в водных экосистемах.

4. Можно ли назвать процесс окисления различных веществ аэробными бактериями процессом самоочищения водных экосистем?

5. Какие изменения водных экосистем связаны с хозяйственной деятельностью человека?

6. Почему одним из критериев качества природной воды является количество растворенного в ней кислорода?

7. Введите понятия показателей качества воды БПК, БПК 5 , БПК 20 и ХПК. В чем их различие?

8. Что такое окисляемость? Что показывает величина окисляемости?

9. В чем сущность метода перманганатной окисляемости и для определения качества какой воды его используют?

Работа № 5

Кислотные осадки

Теоретическая часть

Одной из экологических проблем является повышение кислотности окружающей среды.

Основными источниками кислотных осадков являются соединения серы и азота. Сера содержится в таких полезных ископаемых, как уголь, нефть, железные, медные и другие руды. Одни из них используются как топливо, другие направляют на предприятия химической и металлургической промышленности с целью их переработки. При обжиге металлических руд и сжигании ископаемого топлива сера окисляется с образованием оксидов серы SO 2 и SO 3 , которые, соединяясь с парами воды, находящимися в атмосфере, образуют кислоты – сернистую и серную:

SO 2 + Н 2 O ® Н 2 SO 3 ,

SO 3 + Н 2 O ® Н 2 SO 4

Природным источником серосодержащих соединений является извержение вулканов. При извержении вулканов преобладает диоксид серы (SO 2), в меньшем количестве в атмосферу поступает сероводород (Н 2 S), а также сульфаты в виде аэрозолей и твердых частиц. Ежегодно во всем мире в результате вулканической деятельности выделяется 4-16 млн. т. соединений серы (в пересчете на SO 2).

Основным источником соединений азота является процесс сжигания топлива. Так, например, в выхлопных газах автомобильного транспорта содержится 93% монооксида азота (NO), который в результате химических реакций в атмосфере превращается в диоксид азота (NO 2), образующего с водой азотистую и азотную кислоты.

2NO 2 + Н 2 O ® НNO 3 + НNO 2

3HNO 2 ® HNO 3 + 2NO + H 2 O

Природные источники азота – это деятельность почвенных бактерий, лесные пожары, грозовые разряды и молнии.

Основными компонентами кислотных осадков являются серная и азотная кислоты.

Количественной характеристикой кислотности среды является водородный показатель рН – логарифм концентрации ионов водорода (моль/дм 3), взятый с обратным знаком, рН = – lg .

В кислой среде 0<рН< 7, в щелочной - 7< рН< 14, в нейтральной – рН=7.

Чистая дождевая вода имеет слабокислую среду вследствие растворения в ней диоксида углерода СO 2:

2СO 2 + Н 2 O « Н 2 СO 3 « H + + НСO 3 – ,

и ее рН ≈ 5,5 - 5,6. Осадки, рН которых меньше, чем 5,5, называются кислотными .

Кислотные осадки наносят экологический, экономический и эстетический ущерб.

В результате выпадения кислотных осадков нарушается равновесие в экосистемах, снижается продуктивность сельскохозяйственных растений и плодородие почв, ржавеют металлические конструкции, разрушаются здания, сооружения, памятники архитектуры.

Кислотные осадки растворяют тяжелые металлы и их соединения, находящиеся в почве, в результате чего они усваиваются растениями и передаются по пищевым цепям от уровня к уровню. Попадание в организм соединений тяжелых металлов (ртути, свинца, кадмия, меди и др.) может привести к различным патологическим изменениям. В частности, они нарушают структуру белков и их функции.

Учеными доказана токсичность алюминия, оказывающего негативное влияние на растения, животных и человека. Алюминий – составной элемент глинистых почв, при средних значениях кислотности он находится в малорастворимых нетоксичных формах. При повышении кислотности почвы происходит растворение соединений алюминия, образуются токсичные соединения, которые разрушают корневую систему, нарушается процесс питания.

Изменение рН влечет глубокие биохимические перестройки водных экосистем. Многие организмы вымирают из-за невозможности размножения в кислой среде. При рН равном 6,0 –5,0 гибнут сиговые рыбы, форель, хариус, лосось, окунь, щука. При рН ниже 4,5 в воде озер вымирают микроорганизмы, развиваются анаэробные (бескислородные) процессы с выделением метана и сероводорода.

Кислотные осадки медленно растворяют сооружения из мрамора и известняка. Существует опасность полной утраты произведений искусства в ближайшие 15-20 лет.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тема работы “Кислотные осадки”.

Цель работы – определение значения рН атмосферных осадков и изучение влияния кислотных осадков на живые организмы и архитектурные сооружения.

Расшифровка показателей анализа воды

После завершения исследования заказчик получает на руки «Протокол исследования воды». В приведённой ниже статье вкратце дана информация о каждом параметре, но, если вы хотите узнать больше, приходите, наши технологи ответят на все ваши вопросы.

Водородный показатель (pH) (Норматив качества по СанПин 2.1.4107401, в пределах 6 - 9 единиц pH)

Водородный показатель воды (pH) — это кислотно-щелочной баланс воды, который определяется концентрацией водородных ионов. Обычно выражается через рН - отрицательный логарифм концентрации ионов водорода. При рН = 7,0 реакция воды нейтральная, при рН<7,0 среда кислая, при рН>7,0 среда щелочная.

Питьевая вода централизованного водоснабжения и вода из природных источников демонстрируют различный диапазон рН, поскольку она содержит растворенные минералы и газы.

По нормам СанПиН 2.1.4.559-96 рН питьевой воды должен быть в пределах 6,0…9,0

Окисляемость перманганатная (Норматив качества по СанПин 2.1.4107401, не более 5,0 мг О/дм3)

Окисляемость - это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых перманганатом калия при определенных условиях.

Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутри водоёмных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.

Повышенной перманганатной окисляемостью отличаются воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях.

Таким образом о степени органического загрязнения воды можно судить по величине окисляемости воды. Высокая окисляемость или резкие колебания ее (вне сезона) могут указывать на постоянное поступление органических загрязнений в водоем.

Окисляемость природных вод, особенно поверхностных, не является постоянной величиной. Повышенная окисляемость воды свидетельствует о загрязнении источника. Внезапное повышение окисляемости воды служит признаком загрязнения ее бытовыми стоками; поэтому величина окисляемости — важная гигиеническая характеристика воды.

Железо общее (Норматив качества по СанПин 2.1.4107401, не более 0,3 мг/дм3)

Железо может встречаться в природных водах в следующих видах:

Истинно растворённом виде (двухвалентное железо, прозрачная бесцветная вода)

Нерастворённом виде (трёхвалентное железо, прозрачная вода с коричневато-бурым осадком или ярко выраженными хлопьями);
- Коллоидном состоянии или тонкодисперсной взвеси (окрашенная желтовато-коричневая опалесцирующая вода, осадок не выпадает даже при длительном отстаивании);
- Железоорганика - соли железа и гуминовых и фульвокислот (прозрачная желтовато-коричневая вода).

Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот - гуматами.

Железобактерии (коричневая слизь на водопроводных трубах);

Содержащая железо вода (особенно подземная) изначально прозрачная и чистая на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/дм3 такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/дм3 вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения.

В небольших количествах железо необходимо организму человека - оно входит в состав гемоглобина и придает крови красный цвет.

Но слишком высокие концентрации железа в воде для человека вредны. Содержание железа в воде выше 1-2 мг/дм3 значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус. Железо увеличивает показатели цветности и мутности воды.

Переизбыток железа приводит к зуду, сухости и высыпаниям на коже; повышается вероятность развития аллергических реакций, возникновение язвенной болезни желудка и двенадцатиперстной кишки, заболевания сосудов и сердечно-сосудистой системы в целом.

Нитрат - ион (Норматив качества по СанПин 2.1.4107401, не более 45 мг/дм3)

Нитраты - это соли азотной кислоты. В воде эти соли легко распадаются на ионы и существуют в "свободной" форме: в виде нитрат-ионов

Нитраты находятся в почве, воде и растениях. Большая часть нитратов в окружающей среде образуется от разложения растений и животных отходов. Люди также используют нитраты в виде удобрений.

Сами по себе нитраты не опасные, но в организме они превращаются в нитриты, а те, в свою очередь, взаимодействуют с гемоглобином, образуя стойкое соединение - метгемоглобин. Как известно, гемоглобин переносит кислород, а вот метгемоглобин такой способностью не обладает. В итоге ткани начинают испытывать кислородное голодание, развивается заболевание - нитратная метгемоглобинемия.

При длительном употреблении питьевой воды и пищевых продуктов, содержащих значительные количества нитратов (от 45 мг/дм3 и выше по азоту), резко возрастает концентрация метгемоглобина в крови. Крайне тяжело протекают метгемоглобинемии у грудных детей (прежде всего, искусственно вскармливаемых молочными смесями, приготовленными на воде с повышенным порядка 200 мг/дм3 содержанием нитратов) и у людей, страдающих сердечно-сосудистыми заболеваниями.

Следует знать, что нитраты не удалятся из воды путем кипячения, фактически термическая обработка концентрирует нитрат, за счет испарения воды.

Марганец (Норматив качества по СанПин 2.1.4107401, не более 0,1 мг/дм3)

Марганец является верным спутником растворенного двухвалентного железа. Если его много, то воду от него необходимо очищать, т.к. вода делается непригодной для питья, а также бытового и промышленного использования.

При превышении норм содержания марганца органолептические свойства воды ухудшаются. Избыток марганца вызывает окраску и вяжущий привкус.

Переизбыток марганца может грозить заболеваниями печени, почек, тонкого кишечника, костей, желез внутренней секреции и головного мозга, оказывает токсический и мутагенный эффект на организм человека.

Повышенное содержание марганца и железа является одной из причин неприятного вкуса и запаха воды, ее цветности и мутности. Окислы этих металлов оставляют несмываемые пятна на сантехническом оборудовании и санитарном фаянсе, а ржавчина может является основной причиной выхода из строя бытовой техники.

Мутность (по каолину) (Норматив качества по СанПин 2.1.4107401, не более 1,5 мг/дм3)

Мутность (прозрачность, содержание взвешенных веществ) характеризует наличие в воде частиц песка, глины, илистых частиц, планктона, водорослей и других механических примесей, которые попадают в нее в результате размыва дна и берегов реки, с дождевыми и талами водами, со сточными водами и т.п. Мутность воды подземных источников, как правило, невелика и обуславливается взвесью гидроксида железа. В поверхностных водах мутность чаще обусловлена присутствием фито- и зоопланктона, глинистых или илистых частиц, поэтому величина зависит от времени паводка (межени) и меняется в течение года.

Мутность влияет на внешний вид воды. Кроме того, она мешает дезинфекции,

т.к. создает не только благоприятную среду для развития бактерий, но и своеобразный

барьер при проведении процедуры обеззараживания.

Цветность воды (Норматив качества по СанПин 2.1.4107401, не более 20 градусов).

Показатель качества воды, характеризующий интенсивность окраски воды и обусловленный содержанием окрашенных соединений; выражается в градусах платинокобальтовой шкалы.

Цветность подземных вод вызывается соединениями железа, реже - гумусовыми веществами (грунтовка, торфяники, мерзлотные воды); цветность поверхностных - цветением водоемов.

Количество этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.п. Сточные воды некоторых предприятий также могут создавать довольно интенсивную окраску воды.

Высокая цветность воды ухудшает ее органолептические свойства

Запах

Вода может иметь определенный, не всегда приятный, запах, который приобретает из-за содержащихся в ней различных органических веществ, представляющих собой продукты жизнедеятельности или распада микроорганизмов и водорослей, а также присутствием в воде растворенных газов - хлора, аммиака, сероводорода, меркаптанов или органических и хлорорганических загрязнений.

Различают природные запахи: ароматический, болотный, гнилостный, древесный, землистый, плесневый, рыбный, травянистый, неопределённый и сероводородный.

Запахи искусственного происхождения называют по определяющим их веществам: фенольный, хлор фенольный, нефтяной, смолистый и так далее.

Интенсивность запаха измеряется органолептически по пятибалльной шкале:
0 баллов - запах и привкус не обнаруживается
1 балл - очень слабые запах или привкус (обнаруживает только опытный исследователь)
2 балла - слабые запах или привкус, привлекающие внимание неспециалиста
3 балла - заметные запах или привкус, легко обнаруживаемые и являющиеся причиной жалоб
4 балла - отчётливые запах или привкус, которые могут заставить воздержаться от употребления воды
5 баллов - настолько сильные запах или привкус, что вода для питья совершенно непригодна.

Вкус (Норматив качества по СанПин 2.1.4107401, не более 2 баллов).

Вкус воды различается по характеру и интенсивности, определяется наличием в воде растворенных веществ.

Существует 4 основных вида вкуса: горький, сладкий, соленый, кислый. Другие ощущения вкусовые называются привкусами (щелочной, металлический, вяжущий и т.п.).

Интенсивность вкуса и привкуса определяют при 20оС и оценивают по пятибалльной системе:

0 баллов - Вкус и привкус не ощущаются

1 балл - Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании

2 балла - Вкус и привкус замечаются потребителем, если обратить на это его внимание

3 балла - Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде

4 балла - Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

5 баллов - Вкус и привкус настолько сильные, что делают воду непригодной к употреблению

Кремнекислота (в пересчёте на кремний) (Норматив качества по СанПин 2.1.4107401, не более 10 мг/дм3)

Кремний в воде находится не в чистом виде, а в форме различных соединений, которые при нагревании воды могут образовывать белёсую плёнку на поверхности воды и рыхлые хлопья, т.е. соединения кремния являются источником образования силикатных накипей, поэтому в случае подготовки питьевой воды для промышленного сектора, для питательной воды паровых котлов очистка воды от кремния является обязательной.

В то же время кремний является для человека незаменимым микроэлементом; его можно обнаружить и в крови, и в мышечной и костной ткани. По сути, он является строительным материалом, необходимым для образования и роста соединительной ткани человеческого организма (суставов, костей, кожи и т.д.). Также он помогает усвоению поступивших в организм минеральных элементов, способствует улучшению обмена веществ и транспортировке сигналов по нервным волокнам.

Кремний попадает в организм человека вместе с пищей и водой, причем этот элемент легче усваивается именно из жидкости.

Зарубежными руководящими документами (директивы ВОЗ, USEPA, ЕС) содержание кремния в питьевой воде не нормируется. Это вызвано отсутствием данных о токсичности данного элемента и его негативном влиянии на организм человека.

Жесткость общая (Норматив качества по СанПин 2.1.4107401, не более 7,0 мг-экв/л)

Жесткость воды - содержание в ней растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью.

Общая жесткость воды подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН 8,3) кальция и магния, и некарбонатную - концентрацию в воде кальциевых и магниевых солей сильных кислот.

Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты и выпадают в осадок, карбонатную жесткость называют временной или устранимой.

Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости воды выражают в мг-экв/дм3 (в настоящее время чаще применяют градусы жесткости оЖ численно равные мг-экв/дм3). Временная или карбонатная жесткость может доходить до 70-80% общей жесткости воды.

Жесткость воды формируется в результате растворения горных пород, содержащих кальций и магний. Преобладает кальциевая жесткость, обусловленная растворением известняка и мела, однако в районах, где больше доломита, чем известняка, может преобладать и магниевая жесткость.

В зависимости от жёсткости вода бывает:

Очень мягкая вода до 1,5 мг-экв/л

Мягкая вода от 1,5 до 4 мг-экв/л

Вода средней жесткости от 4 до 8 мг-экв/л

Жесткая вода от 8 до 12 мг-экв/л

Очень жесткая вода более 12 мг-экв/л

Жесткая вода просто неприятна на вкус, в ней излишне много кальция. Постоянное употребление внутрь воды с повышенной жесткостью приводит к снижению моторики желудка, к накоплению солей в организме, и, в конечном итоге, к заболеванию суставов (артриты, полиартриты) и образованию камней в почках и желчных путях.

Очень мягкая вода не менее опасная, чем излишне жесткая. Самая активная - это мягкая вода. Мягкая вода способна вымывать из костей кальций. У человека может развиться рахит, если пить такую воду с детства, у взрослого человека становятся ломкие кости. Есть еще одно отрицательное свойство мягкой воды. Она, проходя через пищеварительный тракт, не только вымывает минеральные вещества, но и полезные органические вещества, в том числе и полезные бактерии. Вода должна быть жесткостью не менее 1,5-2 мг-экв/л.

Использование воды с большой жесткостью для хозяйственных целей также нежелательно. Жесткая вода образует налет на сантехнических приборах и арматуре, образует накипные отложения в водонагревательных системах и приборах. В первом приближении это заметно на стенках, например, чайника.

При хозяйственно-бытовом использовании жесткой воды значительно увеличивается расход моющих средств и мыла вследствие образования осадка кальциевых и магниевых солей жирных кислот, замедляется процесс приготовления пищи (мяса, овощей и др.), что нежелательно в пищевой промышленности.

В системах водоснабжения - жесткая вода приводит к быстрому износу водонагревательной технике (бойлеров, батарей центрального водоснабжения и др.). Соли жесткости (гидрокарбонаты Ca и Mg), отлагаясь на внутренних стенках труб, и образуя накипные отложения в водонагревательных и охлаждающих системах, приводят к занижению проходного сечения, уменьшают теплоотдачу. Не допускается использовать воду с высокой карбонатной жесткостью в системах оборотного водоснабжения.

Сдать воду на химический анализ