Независимые события складываются или умножаются. Сложение и умножение вероятностей математика

Тема: 15. ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ

ВЕРОЯТНОСТЕЙ И ИХ СЛЕДСТВИЯ

1. Теорема сложения вероятностей совместных событий.

2. Теорема умножения вероятностей независимых событий.

3. Условная вероятность события. Теорема умножения вероятностей зависимых событий.

4. Теорема сложения вероятностей совместных событий.

5. Формула полной вероятности, формула Бейеса.

6. Повторение испытаний.

1. Теорема сложения вероятностей совместных событий.

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если события А и В – совместные, то их сумма А+В обозначает наступление или события А, или события В, или обоих событий вместе. Если А и В – несовместные события, то их сумма А+В означает наступление или события А, или события В.

Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении этих событий.

Теорема: Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий

Р (А+В) = Р (А)+ Р(В).

Следствие: Сумма вероятностей несовместных событий А 1 ,...,А n , образующих полную группу, равна единице:

Р(А 1) + Р(А 2)+... +Р (А n) = 1

2. Теорема умножения вероятностей независимых

событий .

Два события называются независимыми, если вероятность появления одного из них не зависит от того, появилось или не появилось другое событие.

Несколько событий называются взаимно независимыми (или независимыми в совокупности), если каждое из них и любая комбинация, составленная из остальных (части или всех) событий, являются независимыми событиями.

Если события А 1 ,А 2 ,...,А n взаимно независимы, то и противоположные их события также взаимно независимы.

Теорема : Вероятность произведения нескольких взаимно независимых событий равна произведению вероятностей этих событий.

Р(А 1 А 2 ,...А n ) = Р(А 1 ) Р(А 2 ) ... Р(А n )

Для двух событий Р(АВ) = Р(А)  Р(В)

Задача . Два товароведа работают независимо друг от друга. Вероятность пропустить бракованное изделие первым товароведом 0,1; вторым 0,2. Какова вероятность то­го, что при просмотре изделия оба товароведа не пропустят брак.

Решение : событие А - брак пропустил I товаровед, событие В - брак пропустил II товаровед.

Где событие А – брак не пропустит I товаровед,

событие В - брак не пропустит II товаровед.

Так как оба работают независимо друг от друга, то А и В независимые события.

3. Условная вероятность события. Теорема умножения вероятностей зависимых событий.

Событие В называют зависимым от события А, если появление события А изменяет вероятность появления события В.

Вероятность события В, найденная при условии, что событие А произошло, называется условной вероятностью события В и обозначается Р А (В).

Теорема : Вероятность совместного появления двух зависимых событий А и В равна произведению вероятности одного из них на ус­ловную вероятность другого, найденную в предположении, что первое событиеуже наступило, т.е.

Р(АВ) = Р(А) Р А (В) или Р(АВ) = Р(В) Р В (А)

Теорема умножения вероятностей может быть распространена на любое число m зависимых событий А 1 А 2 ...А m .

Р(А 1 А 2 ..А m )=Р(А 1 )

причем вероятность последующего события вычисляется в предположении, что все предыдущие произошли.

Задача. В коробке 2 белых и 3 синих ручки. Из коробки вынимают подряд две ручки. Найти вероятность того, что обе ручки белые.

Решение: событие А - обе ручки белые, событие В - появление первой белой ручки, событие С - появление второй белой ручки.

Тогда А= В С.

Так как первая ручка не возвращается в коробку, т.е. состав коробки изменился, то события В и С зависимые.

Р (В) = 2/5; Вероятность события С находим в предположении, что В уже произошло, т.е. Р B (С) = ¼.

Искомая вероятность

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей двух событий . Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления :

Р(А+В)=Р(А)+Р(В)-Р(АВ).

Теорема сложения вероятностей двух несовместных событий . Вероятность суммы двух несовместных событий равна сумме вероятностей этих :

Р(А+В)=Р(А)+Р(В).

Пример 2.16. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую - 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение.

События А - «стрелок попал в первую область» и В - «стрелок попал во вторую область» - несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность равна:

Р(А+В)=Р(А)+Р(В)= 0,45+ 0,35 = 0,8.

Теорема сложения вероятностей п несовместных событий . Вероятность суммы п несовместных событий равна сумме вероятностей этих :

Р(А 1 +А 2 +…+А п)=Р(А 1)+Р(А 2)+…+Р(А п).

Сумма вероятностей противоположных событий равна единице:

Вероятность события В при условии, что произошло событие А , называется условной вероятностью события В и обозначается так: Р(В/А), или Р А (В).

. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

Р(АВ)=Р(А)Р А (В).

Событие В не зависит от события А , если

Р А (В)=Р(В),

т.е. вероятность события В не зависит от того, произошло ли событие А .

Теорема умножения вероятностей двух независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Р(АВ)=Р(А)Р(В).

Пример 2.17. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А – «попадание первого орудия» и В – «попадание второго орудия» независимы.

Вероятность события АВ – «оба орудия дали попадание»:

Искомая вероятность

Р(А+В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Теорема умножения вероятностей п событий. Вероятность произведения п событий равна произведению одного из них на условные вероятности всех остальных, вычисленные в предположении, что все предыдущие события наступили:

Пример 2.18 . В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором – черный (событие В) и при третьем – синий (событие С).

Решение.

Вероятность появления белого шара в первом испытании:

Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность:

Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором - черный, т. е. условная вероятность:

Искомая вероятность равна:

Теорема умножения вероятностей п независимых событий. Вероятность произведения п независимых событий равна произведению их вероятностей:

Р(А 1 А 2 …А п)=Р(А 1)Р(А 2)…Р(А п).

Вероятность появления хотя бы одного из события. Вероятность появления хотя бы одного из событий А 1 , А 2 , …, А п, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

.

Пример 2.19. Вероятности попадания в цель при стрельбе из трех орудий таковы: р 1 = 0,8; р 2 = 0,7; р 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A 1 (попадание первого орудия), А 2 (попадание второго орудия) и А 3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А 1 , А 2 и А 3 (т.е. вероятности промахов), соответственно равны:

, , .

Искомая вероятность равна:

Если независимые события А 1 , А 2 , …, А п имеют одинаковую вероятность, равную р , то вероятность появления хотя бы одного из этих событий выражается формулой:

Р(А)= 1 – q n ,

где q=1- p

2.7. Формула полной вероятности. Формула Байеса.

Пусть событие А может произойти при условии появления одного из несовместных событий Н 1 , Н 2 , …, Н п , образующих полную группу событий. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами .

Вероятность появления события А вычисляется по формуле полной вероятности:

Р(А)=Р(Н 1)Р(А/Н 1)+ Р(Н 2)Р(А/Н 2)+…+ Р(Н п)Р(А/Н п).

Допусти, что произведен опыт, в результате которого событие А произошло. Условные вероятности событий Н 1 , Н 2 , …, Н п относительно события А определяются формулами Байеса :

,

Пример 2.20 . В группе из 20 студентов, пришедших на экзамен, 6 подготовлены отлично, 8 – хорошо, 4 – удовлетворительно и 2 – плохо. В экзаменационных билетах имеется 30 вопросов. Отлично подготовленный студент может ответить на все 30 вопросов, хорошо подготовленный – на 24, удовлетворительно – на 15, плохо – на 7.

Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.

Решение.

Гипотезы – «студент подготовлен отлично»;

– «студент подготовлен хорошо»;

– «студент подготовлен удовлетворительно»;

– «студент подготовлен плохо».

До опыта:

; ; ; ;

7. Что называют полной группой событий?

8. Какие события называют равновозможными? Приведите примеры таких событий.

9. Что называют элементарным исходом?

10. Какие исходы называю благоприятными данному событию?

11. Какие операции можно проводить над событиями? Дайте им определения. Как обозначаются? Приведите примеры.

12. Что называется вероятностью?

13. Чему равна вероятность достоверного события?

14. Чему равна вероятность невозможного события?

15. В каких пределах заключена вероятность?

16. Как определяется геометрическая вероятность на плоскости?

17. Как определяется вероятность в пространстве?

18. Как определяется вероятность на прямой?

19. Чему равна вероятность суммы двух событий?

20. Чему равна вероятность суммы двух несовместных событий?

21. Чему равна вероятность суммы n несовместных событий?

22. Какую вероятность называют условной? Приведите пример.

23. Сформулируйте теорему умножения вероятностей.

24. Как найти вероятность появления хотя бы одного из событий?

25. Какие события называют гипотезами?

26. Когда применяются формула полной вероятности и формулы Байеса?

Рассматривается эксперимент Е . Предполагается, что его можно проводить неоднократно. В результате эксперимента могут появляться различные события, составляющие некоторое множество F . Наблюдаемые события разделяются на три вида: достоверное, невозможное, случайное.

Достоверным называется событие, которое обязательно произойдет в результате проведения эксперимента Е . Обозначается Ω.

Невозможным называется событие, которое заведомо не произойдет в результате проведения эксперимента Е . Обозначается .

Случайным называется событие, которое может произойти или не произойти в результате эксперимента Е .

Дополнительным (противоположным) событию А называется событие, обозначаемое , которое происходит тогда и только тогда, когда не происходит событиеА .

Суммой (объединением) событий называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий (рисунок 3.1). Обозначения .

Рисунок 3.1

Произведением (пересечением) событий называется событие, происходящее тогда и только тогда, когда все данные события происходят вместе (одновременно) (рисунок 3.2). Обозначения . Очевидно, что события А и Внесовместны , если .

Рисунок 3.2

Полной группой событий называется множество событий, сумма которых есть достоверное событие:

Событие В называют частным случаем события А , если с появлением события В появляется и событие А . Говорят также, что событие В влечет событие А (Рисунок 3.3). Обозначение .

Рисунок 3.3

События А и В называются эквивалентными , если они происходят или не происходят совместно при проведении эксперимента Е . Обозначение . Очевидно, что, еслии.

Сложным событием называют наблюдаемое событие, выраженное через другие наблюдаемые в том же эксперименте события с помощью алгебраических операций.

Вероятность осуществления того или иного сложного события вычисляют с помощью формул сложения и умножения вероятностей.

Теорема сложения вероятностей

Следствия:

1) в случае, если события А и В несовместны, теорема сложения приобретает вид:

2) в случае трех слагаемых теорема сложения записывается в виде

3) сумма вероятностей взаимно противоположных событий равна 1:

Совокупность событий ,, …,называютполной группой событий , если

Сумма вероятностей событий, образующих полную группу, равна 1:

Вероятность появления события А при условии, что событие В произошло, называют условной вероятностью и обозначают или.

А и В зависимые события , если .

А и В независимые события , если .

Теорема умножения вероятностей

Следствия:

1) для независимых событий А и В

2) в общем случае для произведения трех событий теорема умножения вероятностей имеет вид:

Образцы решения задач

Пример 1 ‑ В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов первого, второго и третьего элементов соответственно равны ,,. Найти вероятность того, что тока в цепи не будет.

Решение

Первый способ.

Обозначим события: - в цепи произошел отказ соответственно первого, второго и третьего элементов.

Событие А – тока в цепи не будет (откажет хотя бы один из элементов, так как они включены последовательно).

Событие ‑ в цепи ток (работают три элемента), . Вероятность противоположных событий связана формулой (3.4). Событие представляет собой произведение трех событий, являющихся попарно независимыми. По теореме умножения вероятностей независимых событий получаем

Тогда вероятность искомого события .

Второй способ.

С учетом принятых ранее обозначений запишем искомое событие А – откажет хотя бы один из элементов:

Так как слагаемые, входящие в сумму, совместны, следует применить теорему сложения вероятностей в общем виде для случая трех слагаемых (3.3):

Ответ: 0,388.

Задачи для самостоятельного решения

1 В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2 В мешке смешаны нити, среди которых 30 % белых, а остальные –красные. Определить вероятности того, что вынутые наудачу две нити будут: одного цвета; разных цветов.

3 Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элементов соответственно равны 0,6; 0,7; 0,8. Найти вероятности того, что за это время безотказно будут работать: только один элемент; только два элемента; все три элемента; хотя бы два элемента.

4 Брошены три игральные кости. Найти вероятности следующих событий:

а) на каждой грани из выпавших появится пять очков;

б) на всех выпавших гранях появится одинаковое число очков;

в) на двух выпавших гранях появится одно очко, а на третьей грани – другое число очков;

г) на всех выпавших гранях появится разное число очков.

5 Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4, можно было ожидать, что не будет ни одного промаха?

6 Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех – вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: в первый раз; во второй раз; в оба раза.

7 Вероятность того, что в мужской обувной секции магазина очередной раз будет продана пара обуви 46-го размера, равна 0,01. Сколько должно быть продано пар обуви в магазине, чтобы с вероятностью, не меньшей 0,9, можно было ожидать, что будет продана хотя бы одна пара обуви 46-го размера?

8 В ящике 10 деталей, среди которых две нестандартные. Найти вероятность того, что в наудачу отобранных шести деталях окажется не более одной нестандартной.

9 Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что:

а) из трех проверенных изделий только два окажутся нестандартными;

б) нестандартным окажется только четвертое по порядку проверенное изделие.

10 32 буквы русского алфавита написаны на карточках разрезной азбуки:

а) три карточки вынимают наугад одну за другой и укладывают на стол в порядке появления. Найти вероятность того, что получится слово «мир»;

б) извлеченные три карточки можно поменять местами произвольным образом. Какова вероятность того, что из них можно сложить слово «мир»?

11 Истребитель атакует бомбардировщик и дает по нему две независимые очереди. Вероятность сбить бомбардировщик первой очередью равна 0,2, а второй ‑ 0,3. Если бомбардировщик не сбит, он ведет по истребителю стрельбу из орудий кормовой установки и сбивает его с вероятностью 0,25. Найти вероятность того, что в результате воздушного боя сбит бомбардировщик или истребитель.

Домашнее задание

1 Формула полной вероятности. Формула Байеса.

2 Решить задачи

Задача 1 . Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа не потребует внимания рабочего первый станок, равна 0,9, второй – 0,8, третий – 0,85. Найти вероятность того, что в течение часа хотя бы один станок потребует внимания рабочего.

Задача 2 . Вычислительный центр, который должен производить непрерывную обработку поступающей информации, располагает двумя вычислительными устройствами. Известно, что каждое из них имеет вероятность отказа за некоторое время, равную 0,2. Требуется определить вероятность:

а) того, что откажет одно из устройств, а второе будет исправно;

б) безотказной работы каждого из устройств.

Задача 3 . Четыре охотника договорились стрелять по дичи в определенной последовательности: следующий охотник производит выстрел лишь в случае промаха предыдущего. Вероятность попадания для первого охотника равна 0,6, для второго – 0,7, для третьего – 0,8. Найти вероятность того, что будет произведено выстрелов:

г) четыре.

Задача 4 . Деталь проходит четыре операции обработки. Вероятность получения брака при первой операции равна 0,01, при второй – 0,02, при третьей – 0,03, при четвертой – 0,04. Найти вероятность получения детали без брака после четырех операций, предполагая, что события получения брака на отдельных операциях являются независимыми.