Никелирование, хромирование, воронение и т.п. в домашних условиях

Никелирование, которое является достаточно распространенной технологической операцией, выполняют для того, чтобы нанести на поверхность металлического изделия тонкий слой никеля. Толщина такого слоя, величину которого можно регулировать, используя различные приемы, может варьироваться от 0,8 до 55 мкм.

Никелирование используется в качестве защитно-декоративного покрытия, а также для получения подслоя при хромировании

С помощью никелирования металла можно сформировать пленку, обеспечивающую надежную защиту от таких негативных явлений, как окисление, развитие коррозионных процессов, реакции, вызванные взаимодействием с соляной, щелочной и кислотной средами. В частности, очень большое распространение получили никелированные трубы, которые активно используются для производства изделий сантехнического назначения.

Чаще всего никелированию подвергаются:

  • изделия из металла, которые будут эксплуатироваться на открытом воздухе;
  • кузовные детали мото- и автотранспортных средств, в том числе и те, для изготовления которых был использован алюминиевый сплав;
  • оборудование и инструменты, применяемые в общей медицине и стоматологии;
  • изделия из металла, которые длительное время эксплуатируются в воде;
  • ограждающие конструкции, изготовленные из стали или алюминиевых сплавов;
  • изделия из металла, подвергающиеся воздействию сильных химических веществ.

Существует несколько используемых как в производственных, так и в домашних условиях методов никелирования металлических изделий. Наибольший интерес в практическом плане представляют способы никелирования металлических деталей, не требующие применения сложного технологического оборудования и реализуемые в домашних условиях. К таким способам относится электролитическое и химическое никелирование.

Электролитическое никелирование

Суть технологии электролитического никелирования металлических деталей, имеющей и другое название – «гальваническое никелирование», можно рассмотреть на примере того, как выполняется омеднение поверхности изделия из металла. Такую процедуру можно проводить как с применением электролитического раствора, так и без него.

Деталь, которая будет в дальнейшем обрабатываться в электролитическом растворе, подвергается тщательной обработке, для чего с ее поверхности при помощи наждачной бумаги удаляют оксидную пленку. Затем обрабатываемое изделие промывается в теплой воде и обрабатывается содовым раствором, после чего снова промывается водой.

Сам процесс никелирования выполняется в стеклянной емкости, в которую заливается водный раствор (электролит). В составе такого раствора содержится 20% медного купороса и 2% серной кислоты. Обрабатываемую деталь, на поверхность которой необходимо нанести тонкий слой меди, в растворе электролита помещают между двумя анодами из меди. Чтобы запустить процесс омеднения, на медные аноды и обрабатываемую деталь необходимо подать электрический ток, величину которого рассчитывают, исходя из показателя 10–15 мА на один квадратный сантиметр площади детали. Тонкий слой меди на поверхности изделия появляется уже через полчаса его нахождения в растворе электролита, причем такой слой будет тем толще, чем дольше будет протекать процесс.

Нанести медный слой на поверхность изделия можно и по другой технологии. Для этого необходимо изготовить кисточку из меди (можно использовать многожильный провод, предварительно сняв с него изоляционный слой). Такую кисточку, сделанную своими руками, надо зафиксировать на деревянной палочке, которая будет служить ручкой.

Изделие, поверхность которого предварительно зачищают и обезжиривают, помещают в емкость из диэлектрического материала и заливают электролитом, в качестве которого можно использовать насыщенный водный раствор медного купороса. Самодельную кисточку подключают к плюсовому контакту источника электрического тока, а обрабатываемую деталь – к его минусу. После этого приступают к процедуре омеднения. Заключается она в том, что кисточкой, которую предварительно обмакивают в электролит, проводят над поверхностью изделия, не прикасаясь к ней. Наносить покрытие, применяя такую методику, можно в несколько слоев, что позволит сформировать на поверхности изделия слой меди, на котором практически отсутствуют поры.

Электролитическое никелирование выполняется по схожей технологии: при его осуществлении тоже используется раствор электролита. Так же, как и в случае с омеднением, обрабатываемое изделие располагают между двумя анодами, только в данном случае они изготовлены из никеля. Аноды, помещенные в раствор для никелирования, подключаются к плюсовому контакту источника тока, а изделие, подвешенное между ними на металлической проволоке, – к минусовому.

Для осуществления никелирования, в том числе и выполняемого своими руками, используются электролитические растворы двух основных типов:

  • водный раствор, включающий в свой состав сернокислый никель, натрий и магний (14:5:3), 2% борной кислоты, 0,5% поваренной соли;
  • раствор на основе нейтральной воды, содержащий в своем составе 30% сульфата никеля, 4% хлорида никеля, 3% борной кислоты.

Электролит блестящего никелирования с добавкой органических блескообразователей (натриевых солей)

Выравнивающий электролит блестящего никелирования. Подходит для поверхностей с низким классом очистки

Чтобы приготовить электролитический раствор, сухую смесь из вышеуказанных элементов заливают одним литром нейтральной воды и тщательно перемешивают. Если в полученном растворе образовался осадок, от него избавляются. Только после этого раствор можно использовать для выполнения никелирования.

Обработка по данной технологии обычно длится полчаса, при этом используют источник тока с напряжением 5,8–6 В. Результатом является поверхность, покрытая неравномерным матовым цветом серого цвета. Чтобы она стала красивой и блестящей, необходимо ее зачистить и выполнить ее полировку. Следует иметь в виду, что такая технология не может быть использована для деталей, отличающихся высокой шероховатостью поверхности или имеющих узкие и глубокие отверстия. В таких случаях покрытие поверхности металлического изделия слоем никеля следует выполнять по химической технологии, которую также называют чернением.

Суть технологической операции чернения заключается в том, что на поверхность изделия сначала наносится промежуточное покрытие, основой которого может быть цинк или никель, а на верхней части такого покрытия формируется слой черного никеля толщиной не более 2 мкм. Покрытие никелем, выполненное по технологии чернения, смотрится очень красиво и обеспечивает надежную защиту металла от негативного воздействия различных факторов внешней среды.

В отдельных случаях металлическое изделие одновременно подвергают сразу двум технологическим операциям, таким как никелирование и хромирование.

Химическое никелирование

Процедуру химического никелирования изделий из металла выполняют по следующей схеме: обрабатываемую деталь на некоторое время погружают в кипящий раствор, в результате чего на ее поверхности оседают частички никеля. При применении такой технологии электрохимическое воздействие на металл, из которого изготовлена деталь, отсутствует.

Результатом использования такой технологии никелирования является формирование на поверхности обрабатываемой детали никелевого слоя, который прочно связан с основным металлом. Наибольшей эффективности такой способ никелирования позволяет добиться в тех случаях, когда с его помощью обрабатываются предметы, изготовленные из стальных сплавов.

Выполнять такое никелирование в домашних условиях или даже в условиях гаража нетрудно. При этом процедура никелирования проходит в несколько этапов.

  • Сухие реактивы, из которых будет приготовлен электролитический раствор, смешиваются с водой в эмалированной посуде.
  • Полученный раствор доводят до кипения, а затем в него добавляют гипофосфит натрия.
  • Изделие, которое необходимо подвергнуть обработке, помещают в электролитический раствор, причем делают это так, чтобы оно не касалось боковых стенок и дна емкости. Фактически надо изготовить бытовой аппарат для никелирования, конструкция которого будет состоять из эмалированной емкости соответствующего объема, а также диэлектрического кронштейна, на котором будет фиксироваться обрабатываемая деталь.
  • Продолжительность кипения электролитического раствора в зависимости от его химического состава может составлять от одного часа до трех.
  • После завершения технологической операции уже никелированная деталь извлекается из раствора. Затем ее промывают в воде, в составе которой содержится гашеная известь. После тщательной промывки поверхность изделия подвергается полированию.

Электролитические растворы для выполнения никелирования, которому можно подвергать не только сталь, но также латунь, алюминий и другие металлы, обязательно содержат в своем химическом составе следующие элементы – хлористый или сернокислый никель, гипофосфит натрия различной кислотности, какую-либо из кислот.

Чтобы увеличить скорость никелирования изделий из металла, в состав для выполнения этой технологической операции добавляют свинец. Как правило, в одном литре электролитического раствора выполняют никелевое покрытие поверхности, площадь которой составляет 20 см 2 . В электролитических растворах с более высокой кислотностью проводят никелирование изделий из черных металлов, а в щелочных обрабатывают латунь, осуществляют никелирование алюминия или деталей из нержавеющей стали.

Некоторые нюансы технологии

Выполняя никелирование латуни, изделий из стали различных марок и других металлов, следует учитывать некоторые нюансы этой технологической операции.

  • Пленка из никеля будет более устойчивой, если она нанесена на предварительно омедненную поверхность. Еще более устойчивой никелированная поверхность будет в том случае, если готовое изделие будет подвергнуто термической обработке, заключающейся в его выдержке при температуре, превышающей 450°.
  • Если никелированию подвергаются детали из закаленных сталей, то нагревать и выдерживать их можно при температуре, не превышающей 250–300°, иначе они могут утратить свою твердость.
  • При никелировании изделий, отличающихся большими размерами, возникает потребность в постоянном перемешивании и в регулярной фильтрации электролитического раствора. Такая сложность особенно характерна для процессов никелирования, выполняемых не в промышленных, а в домашних условиях.

По сходной с никелированием технологии можно покрыть латунь, сталь и другие металлы слоем серебра. Покрытие из данного металла наносят, в частности, на рыболовные снасти и изделия другого назначения, чтобы предотвратить их потускнение.

Процедура нанесения слоя серебра на сталь, латунь и другие металлы отличается от традиционного никелирования не только температурой проведения и временем выдержки, но также тем, что для нее применяют электролитический раствор определенного состава. При этом выполняют данную операцию в растворе, температура которого составляет 90°.

Защита «железа» от коррозии производится в нескольких случаях: при первичной обработке, в целях восстановления повреждения на отдельном участке или декорирования какого-либо образца. При этом используются различные металлы – латунь, медь, серебро и ряд других. Разберемся с технологией никелирования в домашних условиях как одной из самых простых и доступных в плане самостоятельной реализации.

Кроме того, она является и самой распространенной. При покрытии деталей защитным слоем из других металлов тончайшая пленка никеля играет роль промежуточного. Его целесообразно наносить, к примеру, перед .

Примечание. Рецептов использующихся химикатов довольно много. Автор счел правильным привести лишь те, в эффективности которых он убедился лично, нанося защитное никелевое покрытие в домашних условиях.

Единица измерения компонентов – г/л воды (если иное не оговорено). Все использующиеся химикаты разводятся отдельно, тщательно фильтруются и только после этого перемешиваются для получения электролитического раствора.

Подготовка образцов к никелированию

Все мероприятия не только идентичны, но и обязательны, независимо от выбранной технологии нанесения защитного (декоративного) слоя.

Пескоструйная обработка

Цель – максимально убрать ржавчину, окислы (декапирование) и иные инородные наслоения. Вы можете прочесть статью о том, как изготовить в домашних условиях, из подручных материалов. К примеру, переделать краскопульт.

Составы для декапирования

№1. Серная (концентрированная) кислота (75 г) + хромпик (3 г) на полстакана воды. Время выдержки детали в растворе – порядка 20 сек.

№2. Кислота серная (соляная) 5 г + вода (полстакана). Время обработки – до 1 мин.

Шлифовка

Такое тщательное выравнивание способствует получению однородного никелевого слоя и снижает расход подготовленного раствора. В зависимости от значительности дефектов (величины зазоров, царапин) применяется наждачная бумага с разной зернистостью, щетки карцовочные, шлифовочные пасты.

Обезжиривание

Предварительно, после шлифовки, образец промывается под проточной водой для удаления всех налипших фракций. Что использовать (спирт, бензин, уайт-спирит или специально приготовленный раствор), решается на месте. Главное условие – растворитель должен быть «совместим» с материалом основы, подвергающейся никелированию.

В особо трудных случаях, если не помогают имеющиеся в продаже растворители, целесообразно готовить препараты для обезжиривания самостоятельно.

Рецепты водных растворов для стали и чугуна

№1. Едкий натр (10 – 15) + «жидкое стекло» (10) + сода кальцинированная (50).

№2. Едкий натр (50) + фосфорнокислый натрий и кальцинированная сода (по 30) + «жидкое стекло» (5).

Цветных металлов

№1. Фосфорнокислый натрий + хозяйственное мыло (по 10 – 15).

№2. Едкий натр (10) + натрий фосфорнокислый (50 – 55).

  • Чтобы проверить качество обезжиривания, достаточно образец смочить водой. Если она покрывает поверхность тончайшей пленкой, без образования капель, это свидетельствует о том, что цель технологической операции достигнута и деталь готова к никелированию.
  • Рабочая температура растворов – в пределах +(65 – 85) ºС.

Технологии никелирования

Никелирование электролитическое

Простейшие схемы для домашнего применения представлены на рисунке.

  • Сосуд (1) – любой удобной формы и вместимости. Единственное требование – материал должен быть химически нейтрален по отношению к применяемому электролиту. Чаще всего в домашних условиях при никелировании используются емкости из стекла.
  • Аноды (2) – никелевые. Чтобы покрытие образца получилось равномерным, однородным, они должны находиться с разных сторон заготовки. Поэтому – не менее 2-х.
  • Деталь (3). Она же является катодом. Вывешивается так, чтобы не касалась стенок и днища емкости.

Соединения: плюс источника – с пластинами, минус – с образцом.

Состав раствора для никелирования: сернокислые натрий (50), никель (140), магний (30) + борная кислота (20) + соль поваренная (5).

Условия никелирования: температура +22 (±2) ºС, плотность тока – в пределах 1 (±0,2) А/дм².

Технология никелирования. Включается питание и выставляется требуемое значение тока. Процесс длится от 20 минут до получаса. Степень готовности детали определяется визуально, по оттенку (серовато-матовому) и его однородности.

При дефиците (отсутствии) некоторых компонентов в домашних условиях можно приготовить состав с ограниченным количеством ингредиентов, повысив их долевое содержание на литр воды.

Никель сернокислый (250) – натрий хлористый (25) – борная кислота (30). Но при таком составе электролита меняются условия никелирования. Раствор подогревается примерно до +55 ºС (с целью активизации процесса, как и при ), а плотность тока увеличивается до 4 – 5.

Что учесть

  • Качество никелирования во многом зависит от кислотности раствора. Проверяется по окрашиванию лакмусовой бумаги – цвет должен быть красным. При необходимости понизить значение кислотности можно ввести в электролит аммиачный раствор. Дозировка определяется самостоятельно; ориентир – оттенок лакмусового «индикатора».
  • Электролитический способ никелирования не всегда эффективен. Если поверхность образца имеет сложный рельеф, то покрытие ляжет неравномерно, а на особо проблемных участках его может и вообще не быть. Например, в пазах, щелях, отверстиях и так далее.

Никелирование химическое

Технология намного проще, так как все, что понадобится – фарфоровая (эмалированная посуда). При этом качество – выше, так как необработанных участков не останется. Все компоненты растворяются в воде, после чего раствор нагревается до температуры примерно +(85 – 90) ºС. И после этого, независимо от применяемой рецептуры, в него вводится натрия гипофосфит (обозначим НГ).

После перемешивания можно приступать к никелированию. Оно состоит в том, что деталь подвешивается из расчета, чтобы была полностью погружена в хим/реактив. Контроль качества прежний – визуально.

Составов для химического никелирования довольно много. Вот некоторые рецепты:

№1. Сернокислые аммоний и никель (по 30) – повышение температуры – НГ (10). Требуемая кислотность – около 8,5.

№2. Хлористый никель (30) + гликолевая кислота (40) – нагрев – НГ 10 (кислотность 4,2 – 4,4).

№3. Натрий лимоннокислый, хлористый аммоний и хлористый никель (по 45) – подогрев – НГ (20; 8,5).

Рекомендация – кислыми растворами (рН менее 6,5) лучше обрабатывать изделия из меди, черных металлов (сплавов), латуни. При этом получается слой, близкий к идеально гладкому. Составы щелочные (рН от 6,5 и выше) применяются, как правило, для никелирования изделий из «нержавейки». Такое покрытие характеризуется качественной сцепкой с основой.

Никелирование натиранием

Целесообразно практиковать при обработке крупногабаритных заготовок, для которых в домашних условиях подобрать емкость нужных размеров проблематично или невозможно. Сама методика несложная, так как при ней гальванические процессы исключаются. Трудность в другом – придется потратить много времени, чтобы подготовить необходимое оборудование и принадлежности. В первую очередь – щетку.

Состав схемы:

Источник постоянного тока с плавной регулировкой в пределах 5 – 15 В (до 2 А). Приобретать его специально для никелирования смысла нет, так как изготовить самостоятельно для человека, закончившего среднюю школу, не составит труда. Понадобится ТР с соответствующей вторичной обмоткой и выпрямитель (мост). Вполне подойдут диоды серии 303 – 305.

Щетка. Достаточно диаметром 25 (±) мм. Ее ручка должна быть из диэлектрика. Если ориентироваться на то, что есть в доме, то оптимальный вариант – сделать из отрезка трубы ПП или ПЭ. С одного торца ручка «глушится» крышкой. В качестве щетинок используется ворс, например, из синтетики.

Ворсинки собираются в пучок, верхняя часть которого обматывается проволокой (нержавейкой), под которую укладывается изогнутая никелевая пластина. Получается аналог малярной кисти. Это – анод схемы. Минус источника подключается к обрабатываемому изделию.

Провода. Хватит на 0,5 «квадрата». В гараже у любого хозяина всегда найдутся подходящие куски.

Рецептура состава

  • Сернокислые натрий и никель – 40 и 70.
  • Кислота борная – 20.
  • Натрий хлористый – 5.

Примечание. Для никелирования по такой технологии можно использовать тот же раствор, что и по методике электролитической (п. 2.1.3.)

Порядок никелирования: в ручку заливается приготовленный электролит, подается напряжение, и щетка планомерно, с прижимом, перемещается по детали. Неудобство в том, что придется постоянно осуществлять контроль над уровнем раствора в рукоятке и регулярно доливать. Но если в домашних условиях хочется покрыть никелем что-то объемное, например, бампер авто, колесные диски, то другого варианта просто нет.

Рекомендация – для упрощения процесса подготовки оборудования вместо щетки можно использовать пластину их никеля. Она играет роль анода. Ее необходимо обернуть в кусок фланели толщиной не менее 4 мм, и рядом с обрабатываемой деталью поставить емкость с электролитом. Технология простая – постоянно смачивая в растворе такой импровизированный электрод, водить им по поверхности образца. Эффект тот же самый, а результат зависит целиком от усердия и аккуратности домашнего мастера.

Итоговая обработка деталей

  • Просушка. Если образец имеет сложный рельеф, то необходимо убедиться в отсутствии влаги на всех проблемных участках (пазы, выемки и так далее).
  • Герметизация поверхности. Никелевая пленка характеризуется пористостью, даже если покрытие делается в несколько слоев. Следовательно, прямого контакта основы с жидкостью избежать не получится. Дело лишь во времени. Результат – появление коррозии и отслоение никеля.

Чем можно герметизировать поры в домашних условиях:

  • Несколько экзотический, но эффективный способ – погружение еще теплого образца в рыбий жир.
  • Смешать окись магния с водой, довести до состояния густой сметаны и натереть такой «кашицей» никелированную деталь и опустить на пару минут в раствор (50%) соляной кислоты.
  • Обработать поверхность прозрачной, способной проникнуть вглубь структуры смазкой, в 2 – 3 захода.

Излишки препаратов (не раньше чем через 24 часа) легко смываются бензином.

Полировка

На данном этапе никелированной заготовке придается специфический блеск.

Полезная информация

Не всякое «железо» подвергается никелированию. Такая обработка не применяется для олова, свинца и других, менее распространенных в быту металлов и сплавов.

Для более качественного никелирования желательно сделать предварительное омеднение заготовки. Основных причин две.

Первая уже указана – пористость покрытия.

Вторая – с медью слой никеля скрепляется намного надежнее, чем с любым сплавом или чистой сталью. Следовательно, и никелированная деталь будет намного дольше сохранять неизменный привлекательный вид. Если есть возможность сделать в домашних условиях омеднение образца, то это лучшее решение проблемы.

Состав электролита для покрытия стальной детали медной пленкой

Медный купорос (200) + кислота серная, концентрированная (50). Условия обработки образца: плотность тока – 1,5А/дм²; температура – комнатная +22 (±2) ºС.

При проведении никелирования в домашних условиях можно ориентироваться на такие данные – 1 л электролита хватит для обработки детали общей площадью не более 2 дм². Исходя из этого, и определяется потребное количество раствора.

Никель является металлом подгруппы железа, который получил в гальванотехнике наиболее широкое применение.

По сравнению с меднением, латунированием, серебрением и др. никелирование получило промышленное применение значительно позднее, но уже с конца XIX столетия этот процесс стал наиболее распространенным методом «облагораживания» поверхности металлических изделий. Лишь в двадцатые годы текущего столетия широкое применение получил другой процесс - хромирование, который, казалось, вытеснит никелирование. Однако оба эти процесса - никелирование и хромирование для защитно-декоративных целей применяются комбинированно, т. е. изделия сперва никелируют и затем покрывают тонким слоем хрома (десятые доли микрона). Роль никелевого покрытия при этом не умаляется, напротив к нему предъявляются повышенные требования.

Широкое распространение никелирования в гальванотехнике объясняется ценными физико-химическими, свойствами электролитически осажденного никеля. Хотя в ряде напряжений никель стоит выше водорода, вследствие сильно выраженной склонности к пассивированию, однако он оказывается достаточно стойким против атмосферного воздуха, щелочей и некоторых кислот. По отношению к железу никель имеет менее электроотрицательный потенциал, следовательно, основной металл - железо - защищается никелем от коррозии лишь при отсутствии пор в покрытии.

Никелевые покрытия, полученные из растворов простых солей, имеют весьма тонкую структуру, и так как в то же время электролитический никель прекрасно принимает полировку, то покрытия могут быть доведены до зеркального блеска. Это обстоятельство позволяет широко применять никелевые покрытия для декоративных целей. При введении в электролит блескообразователей удается получать в слоях достаточной толщины блестящие никелевые покрытия без полировки. Структура нормальных никелевых осадков чрезвычайно тонка, и ее трудно выявить даже при сильном увеличении.

Чаще всего при никелировании преследуют две цели: защиту основного металла от коррозии и декоративную отделку поверхности. Такие покрытия широко применяют для наружных частей автомобилей, велосипедов, различных аппаратов, приборов, хирургических инструментов, предметов домашнего обихода и т. д.

С электрохимической точки зрения никель может быть охарактеризован как представитель металлов группы железа. В сильнокислой среде осаждение этих металлов вообще невозможно - на катоде выделяется почти один водород. Мало того, даже в растворах, близких к нейтральным, изменение рН влияет на выход по току и свойства металлических осадков.

Явление отслаивания осадка, больше всего присущее никелю, также в сильной степени связано с кислотностью среды. Отсюда и вытекает первейшая забота о соблюдении надлежащей кислотности и регулировании ее при никелировании, так же как выбор надлежащей температуры для правильного ведения процесса.

Первые электролиты для никелирования готовили на основе двойной соли NiSO 4 (NH 4) 2 SO 4 ·6H 2 O. Эти электролиты были впервые исследованы и разработаны профессором Гарвардского университета Исааком Адамсом в 1866 г. По сравнению с современными высокопроизводительными электролитами с высокой концентрацией никелевой соли электролиты с двойной солью допускают плотность тока, не превышающую 0,3-0,4 А/дм 2 . Растворимость двойной никелевой соли при комнатной температуре не превышает 60-90 г/л, в то время как семиводный сульфат никеля при комнатной температуре растворяется в количестве 270-300 г/л. Содержание металлического никеля в двойной соли 14,87%, а в простой (сернокислой) соли 20,9%.

Процесс никелирования весьма чувствителен к примесям в электролите и в анодах. Совершенно очевидно, что малорастворимую в воде соль легче освободить в процессе кристаллизации и промывки от вредных примесей, например сульфатов меди, железа, цинка и др., чем более растворимую простую соль. В значительной степени по этой причине электролиты на основе двойной соли имели доминирующее применение во второй половине XIX и в начале XX столетия.

Борная кислота, которая в настоящее время рассматривается как весьма существенный компонент для буферирования электролита никелирования и электролитического рафинирования никеля, была впервые предложена в конце XIX - начале XX в.

Хлориды были предложены для активирования никелевых анодов в начале XX столетия. К настоящему времени в патентной и журнальной литературе предложено большое разнообразие электролитов и режимов для никелирования, по-видимому, больше, чем по какому-либо другому процессу электроосаждения металлов. Однако без преувеличения можно сказать, что большая часть современных электролитов для никелирования представляет собой разновидность предложенного в 1913 г. профессором Висконзинского университета Уоттсом на основании детального исследования влияния отдельных компонентов и режима электролита. Несколько позднее в результате усовершенствования им было установлено, что в концентрированных по никелю электролитах, при повышенной температуре и интенсивном перемешивании (1000 об/мин) можно получать удовлетворительные в толстых слоях никелевые покрытия при плотности тока, превышающей 100 А/дм 2 (для изделий простой формы). Эти электролиты состоят из трех основных компонентов: сульфата никеля, хлорида никеля и борной кислоты. Принципиально возможна замена хлорида никеля хлоридом натрия, но, по некоторым данным, такая замена несколько снижает допустимую катодную плотность тока (возможно из-за уменьшения общей концентрации никеля в электролите). Электролит Уоттса имеет следующий состав, г/л:
240 - 340 NiSO 4 · 7H 2 O, 30-60 NiCl 2 · 6H 2 O, 30 - 40 H 3 ВO 3 .

Из других электролитов, которые в последнее время все больше привлекают к себе внимание исследователей и находят промышленное применение, следует назвать фторборатные, позволяющие применять повышенную плотность тока и сульфаматные, обеспечивающие возможность получения никелевых покрытий с меньшими внутренними напряжениями.

В начале тридцатых годов текущего столетия, и в особенности после второй мировой войны, внимание исследователей было приковано к разработке таких блескообразователей, которые позволяют получать блестящие никелевые покрытия в слоях достаточной толщины не только на отполированной до блеска поверхности основного металла, но и на матовой поверхности.

Разряд ионов никеля, как и других металлов подгруппы железа, сопровождается значительной химической поляризацией и выделение этих металлов на катоде начинается при значениях потенциалов, которые намного отрицательнее соответствующих стандартных потенциалов.

Выяснению причин этой повышенной поляризации посвящено много исследований и было предложено несколько далеко не совпадающих объяснений. По одним данным, катодная поляризация при электроосаждении металлов группы железа резко выражена лишь в момент начала выделения их, при дальнейшем повышении плотности тока потенциалы меняются незначительно. С повышением температуры катодная поляризация (в момент начала выделения) резко снижается. Так, в момент начала выделения никеля при температуре 15° С катодная поляризация равна 0,33 В, а при 95° С 0,05 В; для железа катодная поляризация снижается с 0,22 В при 15° С до нуля при 70° С, а для кобальта с 0,25 В при 15° С до 0,05 В при 95° С.

Высокую катодную поляризацию в момент начала выделения металлов группы железа объясняли выделением этих металлов в метастабильной форме и необходимостью затраты дополнительной энергии для перехода их в устойчивое состояние. Такое объяснение не является общепризнанным, имеются и другие взгляды на причины большой катодной поляризации, при которой происходит выделение металлов группы железа, и связанную с поляризацией мелкокристаллическую структуру.

Другие последователи приписывали особую роль водородной пленке, образующейся в результате совместного разряда ионов водорода, затрудняющей процесс агрегации мелких кристаллов и приводящей к образованию мелкодисперсных осадков металлов группы железа, а также защелачиванию прикатодного слоя и связанным с этим выпадением коллоидных гидроокисей и основных солей, которые могут соосаждаться с металлами и затруднять рост кристаллов.

Некоторые исходили из того, что большая поляризация металлов группы железа связана с большой энергией активации при разряде сильно гидратированных ионов, расчеты других показали, что энергия дегидратации металлов группы железа примерно такая же, как энергия дегидратации таких двухвалентных ионов металлов как медь, цинк, кадмий, разряд ионов которых протекает с незначительной катодной поляризацией, примерно в 10 раз меньшей, чем при электроосаждении железа, кобальта, никеля. Повышенную поляризацию металлов группы железа объяснили и сейчас объясняют адсорбцией чужеродных частиц; поляризация заметно снижалась при непрерывной зачистке катодной поверхности.

Этим не исчерпывается обзор различных взглядов на причины повышенной поляризации при электроосаждении металлов группы железа. Можно, однако, принять, что за исключением области малых концентраций и высоких плотностей тока, кинетика этих процессов может быть описана уравнением теории замедленного разряда.

Вследствие большой катодной поляризации при сравнительно небольшом перенапряжении водорода процессы электроосаждения металлов группы железа чрезвычайно чувствительны к концентрации ионов водорода в электролите и к температуре. Допустимая катодная плотность тока тем выше, чем выше температура и концентрация ионов водорода (чем ниже водородный показатель).

Свойства и области применения покрытия . Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, мелкокристаллическую структуру и является сплавом никеля с фосфором. Содержание фосфора в осадке зависит от состава раствора и колеблется от 4-6% для щелочных до 8-10% для кислых растворов.

В соответствии с содержанием фосфора изменяются и физические константы никельфосфорного осадка. Удельный вес его равен 7,82-7,88 г/см 3 , температура плавления 890-1200°, удельное электрическое сопротивление составляет 0,60 ом·мм 2 /м. После термообработки при 300-400° твердость никельфосфорного покрытия возрастает до 900-1000 кГ/мм 2 . При этом многократно возрастает и прочность сцепления.

Указанные свойства никельфосфорного покрытия определяют и его области применения.

Его целесообразно применять для покрытия деталей сложного профиля, внутренней поверхности трубок и змеевиков, для равномерного покрытия деталей с весьма точными размерами, для повышения износостойкости трущихся поверхностей и деталей, подвергающихся температурным воздействиям, например, для покрытия пресс-форм.

Никельфосфорному покрытию подвергаются детали из черных металлов, меди, алюминия и никеля.

Этот метод непригоден для осаждения никеля на таких металлах или покрытиях, как свинец, цинк, кадмий и олово.

Осаждение никеля из щелочных растворов . Щелочные растворы характеризуются высокой устойчивостью, простотой корректировки, отсутствием склонности к бурному и мгновенному выпадению порошкообразного никеля (явление саморазряда) и возможностью их длительной эксплуатации без замены.

Скорость осаждения никеля составляет 8-10 мк/час. Процесс идет с интенсивным выделением водорода на поверхности Деталей.

Составление раствора заключается в растворении каждого из компонентов в отдельности, после чего их сливают вместе в рабочую ванну, за исключением гипофосфита натрия. Его приливают лишь тогда, когда раствор нагрет до рабочей температуры и детали подготовлены к покрытию.

Подготовка поверхности стальных деталей к покрытию не имеет специфических особенностей.

После подогрева раствора до рабочей температуры его корректируют 25-процентным раствором аммиака до устойчивого синего цвета, приливают раствор гипофосфита натрия, завешивают детали и приступают к покрытию без предварительной проработки. Корректировку раствора производят главным образом аммиаком и гипофосфитом натрия. При большом объеме ванны никелирования и высокой удельной загрузке деталей корректировку раствора аммиаком осуществляют непосредственно от баллона с газообразным аммиаком, с непрерывной подачей газа к дну ванны посредством резиновой трубки.

Раствор гипофосфита натрия для удобства корректировки готовят с концентрацией 400-500 г/л.

Раствор хлористого никеля обычно готовят для корректировки совместно с хлористым аммонием и лимоннокислым натрием. Для этой цели наиболее целесообразно пользоваться раствором, содержащим 150 г/л хлористого никеля, 150 г/л хлористого аммония и 50 г/л лимоннокислого натрия.

Удельный расход гипофосфита натрия на 1 дм 2 поверхности покрытия, при толщине слоя 10 мк, составляет около 4,5 г, а никеля, в пересчете на металл, - около 0,9 г.

Основные неполадки при химическом осаждении никеля из щелочных растворов приведены в табл. 8.

Осаждение никеля из кислых растворов . В отличие от щелочных кислые растворы характеризуются большим разнообразием добавок к растворам солей никеля и гипофосфита. Так, для этой цели могут применяться уксуснокислый натрий, янтарная, винная и молочная кислоты, трилон Б и прочие органические соединения. Из числа многих составов ниже приведен раствор со следующим составом и режимом осаждения:


Величину рН следует корректировать 2-процентным раствором едкого натра. Скорость осаждения никеля составляет 8-10 мк/час.

Перегрев раствора выше 95° может привести к саморазряду никеля с мгновенным выпадением темного губчатого осадка и выплескиванием раствора из ванны.

Корректировку раствора по концентрации входящих в него компонентов производят лишь до накопления в нем 55 г/л фосфита натрия NaH 2 PО 3 , после чего из раствора может выпадать фосфит никеля. По достижении указанной концентрации фосфита никелевый раствор сливают и заменяют новым.

Термообработка . В тех случаях, когда никель наносят с целью увеличения поверхностной твердости и износостойкости, детали подвергают термообработке. При высоких температурах никельфосфорный осадок образует химическое соединение, что обусловливает резкое повышение его твердости.

Изменение микротвердости в зависимости от температуры нагрева приведено на фиг. 13. Как видно из диаграммы, наибольшее повышение твердости имеет место в диапазоне температур 400-500°. При выборе температурного режима следует учитывать, что для ряда сталей, прошедших закалку или нормализацию, высокие температуры не всегда допустимы. Кроме того, термообработка, проводящаяся в воздушной среде, вызывает появление цветов побежалости на поверхности деталей, переходящих от золотисто-желтого цвета до фиолетового. По этим причинам температуру нагрева часто ограничивают в пределах 350-380°. Необходимо также, чтобы никелированные поверхности перед укладкой в печь были чистыми, так как всякие загрязнения выявляются после термообработки весьма интенсивно и удаление их возможно лишь полировкой. Продолжительность нагрева в 40-60 мин. является достаточной.

Оборудование и оснастка . Основной задачей при изготовлении оборудования для химического никелирования является выбор футеровки ванн, устойчивой к действию кислот и щелочей и теплопроводной. Для опытных работ и для покрытия мелких деталей используют фарфоровые и стальные эмалированные ванны.

При покрытии крупных изделий в ваннах емкостью 50-100 л и более применяются эмалированные баки с эмалями, стойкими в крепкой азотной кислоте. Некоторые заводы применяют стальные цилиндрические ванны, футерованные обмазкой, состоящей из клея № 88 и порошкообразной окиси хрома взятых в равных весовых количествах. Окись хрома может быть заменена наждачными микропорошками. Покрытие производят в 5-6 слоев с промежуточной воздушной сушкой.

На Кировском заводе для этой цели успешно применяют футеровку цилиндрических ванн съемными пластикатовыми чехлами. При необходимости очистки ванн растворы выкачивают насосом, а чехлы извлекают и обрабатывают в азотной кислоте. В качестве материала для подвесок и корзин следует применять углеродистую сталь. Изоляцию отдельных участков деталей и подвесок производят перхлорвиниловыми эмалями или пластикатом.

Для нагревания раствора следует применять электрические нагреватели с передачей тепла через водяную рубашку. Термообработку мелких деталей производят в термостатах. Для крупных изделий используют шахтные печи с автоматическим регулированием температуры.

Никелирование нержавеющих и кислотоупорных сталей . Никелирование производят для повышения поверхностной твердости и износостойкости, а также для защиты от коррозии в тех агрессивных средах, в которых эти стали неустойчивы.

Для прочности сцепления никельфосфорного слоя с поверхностью высоколегированных сталей решающее значение имеет способ подготовки к покрытию. Так, для нержавеющих сталей марки 1×13 и ей подобных подготовка поверхности заключается в ее анодной обработке в щелочных растворах. Детали монтируют на подвесках из углеродистой стали, применяя, если это необходимо, внутренние катоды, завешивают в ванну с 10-15-процентным раствором каустической соды и производят их анодную обработку при температуре электролита 60-70° и анодной плотности тока 5-10 а/дм 2 в течение 5-10 мин. до образования равномерного коричневого налета без металлических просветов. Затем детали промывают в холодной проточной воде, декапируют в соляной кислоте (уд. веса 1,19), разбавленной вдвое, при температуре 15-25° в течение 5-10 сек. После промывки в холодной проточной воде детали завешивают в ванну химического никелирования в щелочном растворе и покрывают по обычному режиму до заданной толщины слоя.

Для деталей из кислотоупорной стали типа IX18H9T анодная обработка должна производиться в хромовокислом электролите со следующим составом и режимом процесса:


После анодной обработки детали промывают в холодной проточной воде, декапируют в соляной кислоте, как это указано для нержавеющей стали, и завешивают в ванну никелирования.

Никелирование цветных металлов . Для осаждения никеля на ранее осажденный слой никеля детали обезжиривают, а затем декапируют в 20-30-процентном растворе соляной кислоты в течение 1 мин., после чего завешивают в ванну для химического никелирования. Детали из меди и ее сплавов никелируют в контакте с более электроотрицательным металлом, например с железом или с алюминием, используя для этой цели проволоку или подвески из этих металлов. В некоторых случаях для возникновения реакции осаждения достаточно создать кратковременное касание железного прута к поверхности медной детали.

Для никелирования алюминия и его сплавов детали травят в щелочи, осветляют в азотной кислоте, как это делается перед, всеми видами покрытий, и подвергают двукратной цинкатной обработке в растворе, содержащем 500 г/л едкого натра и 100 г/л окиси цинка, при температуре 15-25°. Первое погружение длится 30 сек., после чего осадок контактного цинка стравливают в разбавленной азотной кислоте, а второе погружение 10 сек., после чего детали промывают в холодной проточной воде и никелируют в ванне с щелочным никельфосфорным раствором. Полученное покрытие весьма непрочно связано с алюминием, и для повышения прочности сцепления детали прогревают, погружая их в смазочное масло при температуре 220-250° на 1-2 часа.

После термообработки детали обезжиривают растворителями и по мере необходимости протирают, полируют или подвергают другим видам механической обработки.

Никелирование металлокерамики и керамики . Технологический процесс никелирования ферритов заключается в следующих операциях: детали обезжиривают в 20-процентном растворе кальцинированной соды, промывают горячей дистиллированной водой и травят в течение 10-15 мин. в спиртовом растворе соляной кислоты с соотношением компонентов 1:1. Затем детали снова промывают горячей дистиллированной водой с одновременной очисткой шлама волосяными щетками. На покрываемые поверхности деталей кисточкой наносят раствор хлористого палладия с концентрацией его 0,5-1,0 г/л и рН 3,54:0,1. После воздушной сушки нанесение хлористого палладия повторяют еще раз, просушивают и погружают для предварительного никелирования в ванну с кислым раствором, содержащим 30 г/л хлористого никеля, 25 г/л гипофосфита натрия и 15 г/л янтарнокислого натрия. Для этой операции необходимо температуру раствора поддерживать в пределах 96-98° и рН 4,5-4,8. Затем детали промывают в дистиллированной горячей воде и никелируют в том же растворе, но при температуре 90°, до получения слоя толщиной 20-25 мк. После этого детали кипятят в дистиллированной воде, меднят в пирофосфатном электролите до получения слоя 1-2 мк, после чего подвергают бескислотной пайке. Прочность сцепления никельфосфорного покрытия с ферритной основой составляет 60-70 кГ/см 2 .

Кроме того, химическому никелированию подвергаются различные виды керамики, например ультрафарфор, кварц, стеатит, пьезокерамика, тиконд, термоконд и пр.

Технология никелирования составляется из следующих операций: детали обезжиривают спиртом, промывают в горячей воде и сушат.

После этого для деталей из тиконда, термоконда и кварца, производят сенсибилизацию их поверхности раствором, содержащим 10 г/л хлористого олова SnCl 2 и 40 мл/л соляной кислоты. Эта операция производится кисточкой или путем Натирания Деревянной шайбой, смоченной раствором, или же погружением деталей в раствор на 1-2 мин. Затем поверхность деталей активируют в растворе хлористого палладия PdCl 2 ·2Н 2 О.

Для ультрафарфора применяют подогретый раствор с концентрацией PdCl 2 ·2H 2 O 3-6 г/л и с длительностью погружения 1 сек. Для тиконда, термоконда и кварца концентрация снижается до 2-3 г/л с увеличением выдержки от 1 до 3 мин., после чего детали погружают в раствор, содержащий гипофосфит кальция Са(Н 2 РO 2) 2 в количестве 30 г/л, без подогрева, на 2-3 мин.

Детали из ультрафарфора с активированной поверхностью завешивают на 10-30 сек. в ванну предварительного никелирования со щелочным раствором, после чего детали промывают и снова завешивают в ту же ванну для наращивания слоя заданной толщины.

Детали из тиконда, термоконда и кварца после обработки в гипофосфите кальция никелируют в кислых растворах.

Химическое осаждение никеля из карбонильных соединений . При нагревании паров тетракарбонила никеля Ni(CO) 4 при температуре 280°±5 происходит реакция термического разложения карбонильных соединений с осаждением металлического никеля. Процесс осаждения происходит в герметически закрытом контейнере при атмосферном давлении. Газовая среда состоит из 20-25% (по объему) тетракарбонила никеля и 80-75% закиси углерода СO. Примесь кислорода в газе допустима не свыше 0,4%. Для равномерности осаждения следует создавать циркуляцию газа со скоростью подачи 0,01-0,02 м/сек и реверсированием направления подачи через каждые 30-40 сек. . Подготовка деталей к покрытию заключается в удалении окислов и жировых загрязнений. Скорость осаждения никеля составляет 5-10 мк/мин. Осажденный никель имеет матовую поверхность, темно-серый оттенок, мелкокристаллическую структуру, твердость 240-270 по Виккерсу и относительно малую пористость.

Прочность сцепления покрытия с металлом изделий весьма низка и для ее повышения до удовлетворительных величин необходима термообработка при 600-700° в течение 30-40 мин.

Никель широко применяется в машиностроении и приборостроении, а также в разных отраслях. В пищевой промышленности никель заменяет оловянные покрытия, а в области оптики он распространился благодаря процедуре чёрного никелирования металла. Никелем покрывают детали, изготовленные из цветных металлов и стали, для повышения сопротивления изделий механическому износу и защиты от коррозии. Присутствие фосфора в никеле делает пленку по твердости близкой к пленке хрома!

Процедура никелирования

Никелирование представляет собой нанесение на поверхность детали никелевого покрытия, которое обычно имеет толщину от 1 до 50 мкм. Покрытия никелем бывают блестящими или матовыми черными, но не зависимо от этого, обеспечивают надежную защиту металлу в агрессивных средах (кислоты, щелочи) и в условиях повышенной температуры.

Перед процессом никелирования изделие должно быть подготовлено. Его обрабатывают наждачной бумагой для удаления оксидной пленки, протирают щеткой, промывают водой, обезжиривают в горячем содовом растворе и промывают еще раз. Никелевые покрытия способны с течением времени терять свой первичный блеск, поэтому зачастую покрывают слой никеля более устойчивым слоем хрома.

Никель, который нанесен непосредственно на сталь, является катодным покрытием и защищает материал исключительно механическим путем. Несплошность защитного покрытия способствует возникновению коррозионных пар, в которых растворимым электродом выступает именно сталь. В результате этого под покрытием образуется коррозия, разрушающая стальную подложку и провоцирующая отслаивание никелевого покрытия. Для предупреждения этого металл всегда нужно покрывать толстым слоем никеля.

Никелевые покрытия можно наносить на железо, медь, их сплавы, а также на вольфрам, титан и прочие металлы. Нельзя покрывать с помощью химического никелирования такие металлы, как свинец, кадмий, олово, свинец, сурьму и висмут. При никелировании стальных изделий принято наносить подслой меди.

Покрытия никелем используют в разных отраслях промышленности для специальных, защитно-декоративных целей, а также в качестве подслоя. Технологию никелирования используют для восстановления изношенных автозапчастей и деталей машин, покрытия химической аппаратуры, медицинского инструмента, измерительных инструментов, предметов домашнего обихода, деталей, что эксплуатируются с небольшими нагрузками в условии сухого трения или воздействия крепких щелочей.

Виды никелирования

Практике известны две разновидности никелирования - электролитическое и химическое. Последний способ является несколько дороже электролитического, однако способен обеспечить возможность создания равномерного по качеству и толщине покрытия на любых участках поверхности, если выполнено условие доступа к ним раствора.

Электролитическое никелирование

Электролитические покрытия характеризуются некоторой пористостью, зависящей от тщательности подготовки основы и толщины защитного покрытия. Для организации качественной защиты от коррозии требуется полное отсутствие пор, для этого принято предварительно производить меднение детали из металла или наносить многослойное покрытие, что является надежнее однослойного даже при равной толщине.

Для этого нужно приготовить электролит. Возьмите 30 грамм сульфата никеля, 3,5 грамма хлорида никеля и 3 грамма борной кислоты на 100 миллилитров воды, данный электролит налейте в емкость. Для никелирования стали или меди требуются никелевые аноды, которые следует опустить в электролит.

Между никелевыми электродами следует подвесить на проволочке деталь. Проволочки, идущие от никелевых пластинок, необходимо соединить вместе. Детали подключают к отрицательному полюсу источнику тока, а проволочки - к положительному. Затем нужно включить реостат в цепь для регулировки тока и миллиамперметр. Выберите источник постоянного тока, который имеет напряжение не больше 6 В.

Ток необходимо включать приблизительно на двадцать минут. Затем деталь нужно вынуть, промыть и просушить. Изделие покрыто матовым слоем никеля сероватого цвета. Чтобы защитное покрытие приобрело блеск, его необходимо отполировать. Однако при работе помните о существенных недостатках электролитического никелирования в домашних условиях — неравномерности осаждения на рельефной поверхности никеля и невозможности покрытия глубоких и узких отверстий, а также полостей.

Химическое никелирование

Помимо электролитического способа можно использовать еще один, весьма несложный способ для покрытия железа или полированной стали тонким, но прочным слоем никеля. Принято брать 10-процентный раствор хлористого цинка и постепенно добавлять к раствору сернокислого никеля до тех пор, пока жидкость не станет ярко-зеленой. После этого жидкость нужно нагреть до кипения, лучше для этого использовать фарфоровый сосуд.

При этом появляется характерная муть, однако на процесс никелирования деталей она никакого влияния не оказывает. Когда вы доведете жидкость до кипения, следует в неё опустить предмет, который подлежит никелированию. Предварительно очистите деталь и обезжирьте. Изделие должно кипеть в растворе близко часа, время от времени добавляйте дистиллированную воду по мере ее выпаривания.

Если вы заметите во время кипения, что жидкость поменяла цвет из ярко-зеленого на слабо-зеленый, то нужно добавить немного сернокислого никеля для получения первоначального окраса. По истечении указанного времени достаньте изделие из раствора, промойте в воде, в которой распущено немного мела, и тщательно просушите. Сталь или полированное железо, покрытое подобным способом никелирования, это защитное покрытие держит весьма прочно.

В основе процедуры химического никелирования находится реакция восстановления никеля из водного раствора его солей при помощи гипофосфита натрия и прочих химических реактивов. Растворы, которые применяются для химического никелирования, бывают кислыми с уровнем рН 4-6,5 и щелочными с показателем рН выше 6,5.

Кислые растворы целесообразно использовать для покрытия черных металлов, латуни и меди. Щелочные предназначены для нержавеющих сталей. Кислый раствор по сравнению с щелочным дает на полированной детали более гладкую поверхность. Еще одной немаловажной особенностью кислых растворов считается меньшая вероятность саморазряда при превышении порога рабочей температуры. Щелочные растворы гарантируют более надежное сцепление пленки никеля с основным металлом.

Все водные растворы для никелирования своими руками являются универсальными, то есть пригодными для всех металлов. Для химического никелирования берут дистиллированную воду, однако вы можете использовать и конденсат из бытового холодильника. Химические реактивы подойдут чистые - с обозначением на этикетке «Ч».

Последовательность изготовления раствора такова. Все химические реактивы, за исключением гипофосфита натрия, нужно растворить в воде, используя эмалированную посуду. Потом разогрейте раствор до рабочей температуры, растворите гипофосфит натрия и поместите детали в раствор. С помощью одного литра раствора можно отникелировать детали, которые имеют площадь их поверхности до 2 дм2.

Черные покрытия

Никелевые покрытия черного цвета применяются со специальной и декоративной целью. Их защитные свойства являются очень низкими, поэтому их принято наносить на подслой из обычного никеля, цинка или кадмия. Стальные изделия нужно предварительно оцинковать, а медь и латунь — никелировать.

Черное никелевое покрытие является твердым, но хрупким, особенно при значительной толщине. В практике останавливаются на значении толщины в 2 мкм. Никелевая ванна для нанесения подобных покрытий, как правило, содержит большое количество роданида и цинка. В покрытии присутствует близко половины никеля, а остальные 50% составляют сера, азот, цинк и углерод.

Ванны черного никелирования алюминия или стали принято готовить, растворяя в теплой воде все составляющие и фильтруя с помощью фильтровальной бумаги. Если при растворении борной кислоты возникают трудности, то ее отдельно растворяют в воде, что нагрета до 70 градусов по Цельсию. Получение глубокого черного цвета зависит от правильного выбора значения плотности тока.

Ванны никелирования

В мастерских широко применяется ванна, которая состоит из 3 основных компонентов: борной кислоты, сульфата и хлорида. Сульфат никеля является источником ионов никеля. Хлорид значительно влияет на работу анодов из никеля, его концентрация в ванне точно не нормируется. В безхлоридных ваннах совершается сильное пассивирование никеля, после чего содержание в ванне никеля уменьшается, а результатом является снижение выхода по току и падение качества покрытий.

Аноды в присутствии хлоридов растворяются в достаточном количестве для нормального протекания процесса никелирования меди или алюминия. Хлориды увеличивают проводимость ванны и её функционирование при загрязнениях цинком. Борная кислота помогает поддерживать рН на определенном уровне. Эффективность подобного действия зависит в большой степени от концентрации борной кислоты.

В качестве хлорида можно использовать хлорид натрия, цинка или магния. Повсеместно применяются сульфатные ванны Уоттса, которые содержат в качестве добавки электропроводные соли, которые повышают электропроводность ванн и улучшают внешний вид защитных покрытий. Наиболее применяем среди этих солей сульфат магния (близко 30 грамм на литр).

Сульфат никеля принято чаще всего вводить в концентрации порядка 250—350 грамм на литр. В последнее время наметились тенденции к ограничению сульфата никеля - меньше 200 г/л, что помогает заметно снизить потери раствора.

Концентрация борной кислоты составляет 25—40 грамм на литр. Ниже 25 г/л увеличиваются тенденции к быстрому защелачиванию ванны. А превышение допустимого уровня считается неблагоприятным из-за возможной кристаллизации борной кислоты и оседания кристаллов на стенках никелевой ванны и анодах.

Никелевая ванна работает в разном диапазоне температур. Однако технология никелирования в домашних условиях редко применяется при комнатной температуре. От покрытий, которые нанесены в холодных ваннах, часто отслаивается никель, поэтому ванну необходимо нагревать хотя бы до 30 градусов по Цельсию. Плотность тока выбирают экспериментально, чтобы не происходил прижог покрытий.

Натриевая ванна надежно работает в широком диапазоне рН. Раньше поддерживали рН на уровне 5,4—5,8, мотивируя меньшей агрессивностью и высшими кроющими способностями ванны. Однако высокие значения рН провоцируют значительный рост напряжений в никелевом покрытии. Поэтому в большинстве ванн рН составляет 3,5—4,5.

Тонкости никелирования

Сцепление пленки никеля с металлом является сравнительно низким. Данную проблему можно решить с помощью термической обработки пленок никеля. Процедура низкотемпературной диффузии состоит в нагреве отникелированных изделий до температуры 400 градусов по Цельсию и выдержке деталей на протяжении одного часа при этой температуре.

Но помните, что если детали, которые покрыты никелем, были закалены (рыболовные крючки, ножи и пружины), то при температуре 400 градусов они могут отпуститься, теряя твердость - их основное качество. Поэтому низкотемпературную диффузию в подобной ситуации проводят при температуре близко 270-300 градусов с выдержкой до 3 часов. Подобная термообработка способна повышать и твердость покрытия никелем.

Современные ванны никеля требуют специального оборудования для никелирования и перемешивания водного раствора для интенсификации процедуры никелирования и уменьшения риска питтинга - возникновения небольших углублений в покрытии. Перемешивание ванны за собой влечет необходимость создания непрерывной фильтрации для устранения загрязнений.

Перемешивание при помощи подвижной катодной штанги не является настолько эффективным, как использование для этой цели сжатого воздуха, и помимо всего прочего, требует наличия специального ингредиента, который исключает пенообразование.

Снятие никелевого покрытия

Никелевые покрытия на стали принято удалять в ваннах с разбавленной серной кислотой. Добавьте к 20 литрам холодной воды порциями 30 литров концентрированной серной кислоты при постоянном перемешивании. Контролируйте, чтобы температура не превышала 60 градусов по Цельсию. После охлаждения до комнатной температуры ванны ее плотность должна достигать 1,63.

С целью уменьшения риска затравливания материала, из которого выполнена подложка, добавляют в ванну глицерин в количестве 50 грамм на литр. Ванны принято изготовлять из винипласта. Изделия навешивают на средней штанге, которая соединена с плюсом источника тока. Штанги, на которых закреплены свинцовые листы, соединяются с минусом источника тока.

Следите, чтобы температура ванны не превышала 30 градусов, так как горячий раствор на подложку действует агрессивно. Плотность тока должна составлять 4 А/дм2, но допускается изменение напряжения в пределах 5—6 Вольт.

Добавьте через определенное время концентрированную серную кислоту, чтобы поддержать плотность, равной 1,63. Для предупреждения разбавления ванны погружайте изделия в ванну после проведения их предварительной сушки. Контроль процесса особого труда не представляет, потому что плотность тока в момент удаления никеля резко падает.

Таким образом, никелирование является самым популярным гальванотехническим процессом. Покрытие никеля отличается твердостью, большой коррозионной стойкостью, сносной ценой никелирования, хорошими отражательными способностями и удельным электрическим сопротивлением.