Выбор режимов резки при работе на фрезерно-гравировальном оборудовании. Режимы резки, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы Виды токарных станков

Основные показатели режима резки - это давление режущего кислорода и скорость резки, которые зависят (для данного химического состава стали) от толщины разрезаемой стали, чистоты кислорода и конструкции резака.

Давление режущего кислорода имеет большое значение для резки. При недостаточном давлении струя кислорода не сможет выдуть шлаки из места реза и металл не будет прорезан на всю толщину. При слишком большом давлении кислорода расход его возрастает, а разрез получается недостаточно чистым.

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Применять кислород чистотой ниже 95% нецелесообразно из-за снижения скорости и качества поверхности реза. Наиболее целесообразно и экономически оправдано применение, особенно при машинной кислородной резке, кислорода чистотой 99,5% и более.

На скорость резки также оказывают влияние степень механизации процессу (ручная или машинная резка), форма линии реза (прямолинейная или фигурная) и качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая).

Скорость ручной резки можно кроме таблицы также определить по формуле

где δ - толщина разрезаемой стали, мм.

Если скорость резки мала, то будет происходить оплавление кромок; если скорость слишком велика, то будут образовываться непрорезанные участки из-за отставания кислородной струи, непрерывность резки нарушится.

Режимы машинной чистовой резки деталей с прямолинейными кромками без последующей механической обработки под сварку приведены в табл. 20. Для фигурной резки скорость берется в пределах, указанных в таблице для резки двумя резаками. При заготовительной резке скорость принимается на 10 - 20% выше указанной в таблице.

Данные таблицы учитывают, что чистота кислорода - 99,5%. При меньшей чистоте расход кислорода и ацетилена возрастает, а скорость резки уменьшается; эти величины определяются умножением на поправочный коэффициент, равный:


При резке листов толщиной ∼ 100 мм экономически оправдано применение подогревающего пламени с избытком кислорода для возможно более быстрого нагрева поверхности металла.

При выполнении разделительной кислородной резки необходимо учитывать требования, предъявляемые к точности резки и качеству поверхности реза. Большое влияние на качество реза и производительность резки оказывает подготовка металла под резку. Перед началом резки листы подают на рабочее место и укладывают на подкладки так, чтобы обеспечить беспрепятственное удаление шлаков из зоны реза. между полом и нижним листом должен быть не менее 100-150 мм. Поверхность металла перед резкой должна быть очищена. На практике окалину, ржавчину, краску и другие загрязнения удаляют с поверхности металла нагревом зоны резки газовым пламенем с последующей зачисткой стальной щеткой. Вырезаемые детали размечают металлической линейкой, чертилкой и мелом. Часто разрезаемый лист подают к рабочему месту резчика уже размеченным.

Перед началом кислородной резки газорезчик должен установить необходимое давление газов на ацетиленовом и кислородном редукторах, подобрать нужные номера наружного и внутреннего мундштуков в зависимости от вида и толщины разрезаемого металла.

Процесс кислородной резки начинают с нагрева металла в начале реза до температуры воспламенения металла в кислороде. Затем пускают режущий (происходит непрерывное окисление металла по всей толщине) и перемещают резак по линии реза.

Основными параметрами режима кислородной резки являются: мощность подогревающего пламени, давление режущего кислорода и скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла. Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя. При резке металла больших толщин лучшие результаты получают при использовании пламени с избытком горючего (науглероживающее пламя). При этом длина видимого факела пламени (пои закрытом вентиле кислорода) должна быть больше толщины разрезаемого металла.

Выбор давления режущего кислорода зависит от толщины разрезаемого металла, размера режущего сопла и. чистоты кислорода. При увеличении давлении кислорода увеличивается его расход.

Чем чище кислород, тем меньше его расход на 1 пог. м реза. Абсолютная величина давления кислорода зависит от конструкции резака и мундштуков, величин сопротивлений в кислородоподводящей арматуре и коммуникациях.

Скорость перемещения резака должна соответствовать скорости горения металла. От скорости резки зависят устойчивость процесса и вырезаемых деталей. Малая скорость приводит к оплавлению разрезаемых , а большая - к появлению непрорезанных до конца участков реза. Скорость резки зависит от толщины и свойств участков реза. Скорость резки зависит от толщины и свойств разрезаемого металла. При резке сталей малых толщин (до 20 мм) скорость резки зависит от мощности подогревающего пламени. Например, при резке стали толщиной 5 мм около 35% тепла поступает от подогревающего пламени.

а - скорость резки мала, б - оптимальная скорость, в - скорость велика

Рисунок 1 - Характер выброса шлака

На скорость кислородной резки влияет также метод резки (ручной или машинный), форма линии реза (прямолинейная или фигурная) и вид резки (заготовительная или чистовая). Поэтому допустимые скорости резки определяют опытным путем в зависимости от толщины металла, вида и метода резки. При правильно выбранной скорости резки отставание линии реза не должно превышать 10-15% толщины разрезаемого металла.

На рисунке 1 схематически показан характер выброса шлака из разреза. Если скорость кислородной резки мала, то наблюдается отклонение пучка искр в направлении резки (рис. 1, а). При завышенной скорости резки отклонение пучка искр происходит в сторону, обратную направлению резки (рис. 1, в). Скорость перемещения резака считают нормальной, если пучок искр будет выходить почти параллельно кислородной струе (рис. 1, б).

Ширина и чистота реза зависят от способа резки. Машинная резка дает более чистые и меньшую ширину реза, чем ручная. Чем больше толщина разрезаемого металла, тем больше шероховатость кромок и ширина реза. В зависимости от толщины металла ориентировочная ширина реза составляет.

Низко- и среднеуглеродистые, а также низколегированные стали при содержании углерода до 0,3% хорошо режутся кислородом.

Способность стали поддаваться резке приближенно можно оценить по химическому составу, пользуясь следующей формулой эквивалента углерода, учитывающей влияние углерода и легирующих элементов стали на резку:

где С э — эквивалент углерода; символы элементов в формуле обозначают их содержание в стали в весовых процентах.

Пример. Сталь имеет состав: С - 0,2; Мп — 0,8; Si—0,6. Тогда С э =0,2+0,16+0,8+0,3·0,6=0,508. Сталь относится к 1 группе (табл. 16).

Кислородная резка почти не влияет на свойства низкоуглеродистой стали вблизи места реза. Только при резке сталей с повышенным содержанием углерода кромки разреза в результате частичной закалки становятся более твердыми. Глубина зоны влияния при резке составляет:

При резке высоколегированных хромистых, хромомарганцовистых и хромоникелевых сталей происходит обеднение кромок хромом, кремнием, марганцем и титаном, а содержание никеля возрастает. В структуре такой стали между кристаллами около кромки появляются включения легкоплавких сульфидов и силицидов железа, что способствует возникновению горячих трещин в момент остывания кромок. Возможна межкристаллитная коррозия после резки. Поэтому кромки этих сталей после резки кислородом в случае необходимости фрезеруются или строгаются.

Для некоторых марок высоколегированных сталей применяют термическую обработку для восстановления структуры кромок после резки кислородом.

3. РЕЖИМЫ РЕЗКИ

Основные показатели режима резки — это давление режущего кислорода и скорость резки, которые определяются главным образом толщиной разрезаемой стали. Величина давления кислорода зависит от конструкции резака, применяемых мундштуков, величины сопротивлений в кислородоподводящих коммуникациях и арматуре.

На скорость резки, помимо толщины металла, влияют также: метод резки (ручной или машинный); форма линии реза (прямолинейная или фасонная) и, наконец, вид резки (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая).

Режимы ручной резки приводились в табл. 11. Скорость ручной резки можно также определять по формуле

где S — толщина разрезаемой стали, мм.

При малой скорости резки происходит оплавление кромок реза, при слишком большой — значительно отстает кислородная струя, в результате образуются непрорезанные до конца участки и нарушается непрерывность резки.

Режимы машинной чистовой резки деталей с прямолинейными кромками без последующей механической обработки под сварку приведены в табл. 17. Для фасонной резки скорость берется в пределах, указанных в таблице для резки двумя резаками. При заготовительной резке скорость принимается на 10—20% выше указанной в таблице.

Приведенные в табл. 17 данные относятся к кислороду чистотой 99,5%. При меньшей чистоте кислорода эти величины следует умножать на поправочные коэффициенты, равные:

4. ТЕХНИКА РУЧНОЙ РЕЗКИ

Разрезаемый лист укладывают на подкладки, выверяют по горизонтали и, если нужно, закрепляют. Затем лист по линии реза очищают от окалины, ржавчины, грязи, которые уменьшают точность и ухудшают качество реза. Лист размечают (рис. 106), нанося на нем мелом или чертилками контуры вырезаемых деталей, причем так, чтобы металл использовался с наименьшим количеством отходов. Номера наружного и внутреннего мундштуков подбирают в зависимости от толщины металла, в соответствии с паспортом резака.

Резку обычно начинают с кромки листа. Если же нужно начать с середины листа (например, при вырезке фланцев), то сначала в листе прожигают кислородом отверстие, а затем вырезают нужную фигуру. Нагревают металл в месте, откуда ведут резку, а затем пускают режущую струю кислорода. Вслед за этим начинают перемещать резак по намеченной линии реза, прожигая металл на всю толщину. Если резку начинают с кромки, время начального подогрева (при работе на ацетилене) металла толщиной 5—200 мм составляет от 3 до 10 сек. При пробивке отверстия в листе струей кислорода это время увеличивается в 3—4 раза.

Резак следует перемещать равномерно. Если двигать его слишком быстро, то соседние участки металла не будут успевать нагреваться и процесс разрезания может прекратиться. При слишком медленном перемещении резака кромки будут оплавляться и разрез получится неровным, с большим количеством шлака.

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Криволинейная 2D (или 3D) порезка (репрография) незаменима во многих сферах промышленного производства. Услуги данного характера наиболее востребованы в строительстве (фрезеровка кассет из алюминиевого композитного материала), изготовлении наружной и интерьерной рекламы, деревообработке, производстве пресс-форм.

Само собой разумеется, что наличие фрезерно-гравировального оборудования и управляющей программы к нему – еще не гарантия положительного конечного результата при обработке того или иного материала. Плотность и внутренняя структура различных исходных заготовок требуют от оператора станка с ЧПУ специальных знаний, т.к. в противном случае неправильный выбор режима резки может привести не только к порче инструмента (), но и к отбраковке самого материала.

АКП (алюминиевые композитные панели) – наиболее простой в обработке материал, т.к. его внутренний наполнитель (полиэтилен) довольно мягок. Основная задача оператора при изготовлении пазов «под гиб» - не допустить сквозной прорезки заготовки, иначе при сгибании панели в кассету вероятно появление трещин и отслаивание лакокрасочного покрытия. В зависимости от толщины АКП (2-3-4 мм) скорость такой фрезеровки можно доводить до 80 мм/сек, но наиболее оптимальной скоростью подачи рабочего инструмента (конических фрез с углом 90-135 град.) является скорость 50 мм/сек, при которой у оператора не возникает особых проблем в контроле за общей обстановкой в рабочей зоне. Если необходимо выполнить сквозную резку АКП, то здесь скорость подачи инструмента должна находиться в пределах 25-50 мм/сек, т.к. диаметр фрез может быть различным (1,5 – 8 мм) и они, при неправильном выборе скорости, попросту, сломаются. Скорость вращения шпинделя при таких операциях – 20-24 тыс. об/мин.

Такие материалы как ПВХ (поливинилхлорид), акрил, САН, поликарбонат, полистирол, пенопласт и др. желательно фрезеровать на средних скоростях. Исключение можно сделать для ПВХ (до 100 мм/сек), если его толщина не превышает 6 мм, а диаметр рабочей фрезы не меньше 3мм. Самые жесткие материалы (акрил, поликарбонат, САН), как правило, плохо поддаются скоростной резке и оптимальный режим для их обработки – 20 -25 мм/сек. Иногда, требуется выполнить гравировку по литому акрилу. В таких случаях, используется коническая фреза (угол 30-90 град), а скорость ее подачи – 10-20 мм/сек. Скорость вращения шпинделя при таких операциях – 22-24 тыс. об/мин. Во избежание «запекания» стружки при обработке вышеуказанных материалов, следует обеспечить охлаждение фрезы и заготовки специальной жидкостью или, хотя бы, водой.

Деревообработка на станках с ЧПУ, также, отличается своими особенностями и требует правильного выбора режимов резки. Так, при 3D –порезке (детали для лестниц, дверей и т.д.) подача рабочего инструмента может быть различной – от 10 до 100 мм/сек. Здесь стоит ориентироваться на размеры получаемого изделия и твердость самой древесины. Хвойные породы дерева (сосна, кедр и др.) можно обрабатывать на скорости 50-80 мм/сек, более твердые (орех, дуб…) на скорости поменьше. Скорость вращения шпинделя при этом не должна превышать 18 тыс. об/мин.

– наиболее долгий и трудоемкий процесс, зачастую требующий постоянного контроля со стороны оператора. Не говоря о том, что любая резка металла должна обязательно сопровождаться водяным охлаждением инструмента, наличие большого количества «проходов» фрезы существенно влияет на ее быстрый износ и, следовательно, на качество самой порезки. Во избежание несвоевременной порчи инструмента, оператору следует выбрать правильный рабочий режим. Более мягкие металлы (алюминий, медь) можно резать на скорости 10-15 мм/сек, более твердые металлы и сплавы, и вовсе, на скорости 2-5 мм/сек. Вращение шпинделя при этом – 15-24 тыс. об/мин.