Как производится сращивание цепей. Расчет сварных и пластинчатых цепей

Расчет стальных канатов

При выполнении такелажных работ, связанных с монтажом различного технологического оборудования и конструкций при­меняются стальные канаты. Они используются для изготовления стропов и грузовых подвесок, в качестве расчалок, оттяжек и тяг, а также для оснастки полиспастов, лебедок и монтажных кранов.

Независимо от назначения в такелажных средствах необхо­димо применять стальные канаты, отвечающие следующим об­щим требованиям:

по конструкции - двойной свивки;

по типу прядей - с линейным касанием проволок между слоями (ЛК) и в качестве замены - с точечно-линейным каса­нием (ТЛК);

по материалу сердечника - с органическим сердечником (ОС) и в качестве замены - с металлическим сердечником (МС) из канатной проволоки;

по способу свивки - нераскручивающиеся (Н);

по направлению свивки - крестовойсвивки;

по механическим свойствам проволоки - канаты марки I и в качестве замены - канаты марки II;

по маркировочной группе - с временным сопротивлением разрыву 1764 МПа и более; как исключение допускается примене­ние канатов прочностью не менее 1372 МПа;

по наличию покрытия - для работы в химически активных средах и воде - канаты с оцинкованной проволокой;

по назначению - грузовые (Г).

В зависимости от назначения применяются канаты следую­щих типов:

для стропов, грузовых подвесок и оснастки полиспастов, лебедок, кранов - более гибкие канаты типа ЛК-РО конструк­ции 6x36 (1 + 7 + 7/7 + 14) + 1 о. с. (ГОСТ 7668-80); в ка­честве замены могут быть использованы канаты типа ТЛК-0 конструкции 6x37 (1 + 6 + 15 + 15) + 1 о. с. (ГОСТ 3079-80);

для расчалок, оттяжек и тяг - более жесткие канаты типа ЛК-Р конструкции 6 х 19 (1 + 6 + 6/6) + 1 о. с. (ГОСТ 2688-80); в качестве замены допускается применение канатов типа ЛК-0 конструкции 6x19 (1 + 9 + 9) + 1 о. с. (ГОСТ 3077-80). Тех­нические данные рекомендуемых типов канатов приведены в прилож. 1.

Стальные канаты рассчитываются на прочность путем опреде­ления максимальных расчетных усилий в ветвях, умножения их на коэффициент запаса прочности и сравнения полученных значений с разрывным усилием каната в целом. При этом расчет­ные усилия, действующие на канат, включают нормативные нагрузки без учета коэффициентов перегрузки и динамичности от массы поднимаемых грузов вместе с монтажными приспособле­ниями и усилий в оттяжках, тягах.

Расчетстального каната выполняется м следующем порядке:

1. Определяют разрывное усилие канат (кН):

где S - максимальное расчетное усилие в канате, кН; Кз-Коэффициент запаса прочности.(прилож. 2)

2. В зависимости от назначения выбирают более гибкий (6x36) или более жесткий (6x19) канат и по таблице ГОСТа (прилож. I) устанавливают его характеристику: тип, конструкцию, временное сопротивление разрыву, разрывное усилие (не менее расчетного) диаметр и массу.

Решение 1. Подсчитываем разрывное усилие в канате, определив по прилож. 2 коэффициент запаса прочности к з =5 для грузового каната с легким режимом работы:

R к = Sк з = 100*5 = 500 кН.

2.Выбираем для лебедки гибкий канат типа ЛК-РО конструк­ции 6x36 (1 + 7 + 7/7 +14) + 1 о. с. (ГОСТ 7668-80) и по таблице ГОСТа (прилож. I) определяем его характеристики:

временное сопротивление разрыву, Мпа………………………1764

разрывное усилие, кН………………………………………….…517

диаметр каната, мм…………………………………………….……31

масса 1000 м каната, кг…………………………………………..3655

Варианты заданий для подбора стального каната для электролебедки с тяговым усилием см. Приложение 11.

Расчет сварных и пластинчатых цепей

Цепи в монтажных работах имеют ограниченное применение. Сварные некалиброванные цепи обычно используются в качестве стропов, сварные калиброванные и пластинчатые цепи - в грузо­подъемных механизмах.

Для сварных и пластинчатых цепей допускаемое усилие на ветвь в цепи (кН) определяется по формуле:

где R - разрушающая нагрузка, кН (выбирается по таблицам ГОСТа: для свар­ных цепей - табл. 1, для пластинчатых - табл. 2); к з - коэффициент запаса прочности для цепей (выбирается в зависимости от их назначения по табл. 3).

Диаметры барабанов и звездочек, огибаемых сварной цепью, должны быть не менее: для ручного привода - 20 диаметров звена, для машинного привода - 30 диаметров звена. Число зубьев звездочек для пластинчатых цепей должно быть не менее шести.

Пример 2. Определить допускаемое усилие в сварной гру­зовой цепи с диаметром цепной стали d=8 мм для грузоподъем­ного механизма с ручным приводом.

Решение. 1. Находим величину разрушающей нагрузки для данной цепи по

табл. 1: R = 66 кН.

Таблица 1. Цепи круглозвенные и тяговые.

(ГОСТ 2319-81, СТ СЭВ 2639-80)

Диаметр цепной стали, мм Шаг цепи, мм Масса 1 м цепи, кг Диаметр цепной стали, мм Шаг цепи, мм Масса 1 м цепи, кг
0,75 2,25
1,00 2,70
1,35 3,80
1,80 5,80

Таблица 2. Цепи грузовые пластинчатые.

(ГОСТ 191-82, СТ СЭВ 2642-80)

Тип цепи Шаг t, мм Расстояние между внутренними пластинами, l в,мм Размеры пластины, мм Размеры валика, мм Масса l м цепи, кг
Толщина δ Длина L Ширина В Длина l, мм Диаметр средней части d с, мм Диаметр шейки под пластины d ш, мм Количество пластин в одном звене
I 2.5 1,4
2.5 2,7
3.0 3,4
II 3.0 7,0
4.0 10,5
5.0 17,0
5.0 23,0
III 8.0 53,0
8.0 89,0
IV 8.0 150,0
10.0 210,0
10.0 305,0

Примечание. Грузовые пластинчатые цепи изготавливаются четырех типов

I- с расклепкой без шайб; III- с расклепкой на шайбах;

II- на шплинтах; IV- с гладкими валиками.

Таблица 3. Коэффициент запаса прочности

2.Определяем допускаемое усилие в цепи при к з =3:

S = R/к з =66/3 = 22 кН.

Пример 3 . Подобрать пластинчатую цепь для грузоподъемного механизма с машинным приводом при максимальной нагрузке на ветвь цепи S = 35 кН.

Решение. 1. Находим разрушающую нагрузкув ветвицепи:

R = Sк з = 35*5 = 175 кН.

2. Пользуясь табл. 2, подбираем пластинчатую цепь со сле­дующими характеристиками:

Тип цепи ………………………………………………….….11

Шаг цепи t, мм…………………………………………….…60

Ширина пластины В, мм…………………………………....38

Диаметр средней части валика d, мм………………….…...26

Длина валика l, мм……………………………………….….97

Количество пластин в одном звене……………………..…...4

Варианты заданий для подборапластинчатой цеписм. Приложение 12.

Расчет канатных стропов

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами (мачтами, порталами, шеврами, стрелами, монтажными балками), якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

В практике монтажа используются следующие типы канатных стропов: обычные, к которым относятся универсальные и одно-, двух-, трех- и четырехветвевые, закрепляемые на поднимаемом оборудовании обвязкой или инвентарными захватами, а также витые и полотенчатые.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы выполняемые в виде замкнутой петли путем последовательной параллельной плотной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все витки, сокращение рас­хода каната, меньшая трудоемкость строповки.

Полотенчатые стропы выполняют также в виде замкнутой петли из плотно укладываемых витков каната, располагая их однослойно на захватное устройство и элемент поднимаемого оборудования (монтажный штуцер, цапфу, вал). Это обеспечи­вает равномерное натяжение отдельных ветвей стропа. Концы каната закрепляются петлей с помощью сжимов.

Способы изготовления и использования витых и полотенчатых стропов описаны в отраслевом стандарте ОСТ 36-73-82.

Витой строп, допущенный к эксплуа­тации, снабжается металлической биркой с указанием основных технических данных.

Канатные стропы рассчитываются в следующем порядке (рис. 1, а).

1.Определяют натяжение (кН) в одной ветви стропа:

S = Р/(mcos α),

где Р - расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН; m - общее количество ветвей стропа; α - угол между направлением действия расчетного усилия и ветвью стропа, которым за­даются исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45° , имея в виду, что с увеличением его усилие в ветви стропа значительно возрастает).

2.Находят разрывное усилие в ветви стропа (кН):

где к з – коэффициент запаса прочности для стропа (определяется по прилож. 2 в зависимости от типа стропа).

α

Рис.1. Расчетные схемы стропов а- канатный строп; б- витой строп

3.По расчетному разрывному усилию, пользуясь таблицей ГОСТа (прилож. I) подбирают наиболее гибкий стальной канат и определяют его технические данные, тип и конструкцию вре­менное сопротивление разрыву, разрывное усилие к диаметр.

Решение: 1. Определяем натяжение в одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их α= 45 o к направлению действия расчетного усилия Р:

S = P/ (m cosα) = 10 G o /(m cosα)=

10×15/(4×0.707)=53 кН.

2.Находим разрывное усилие в ветви стропа:

R н = Sк з = 53*6=318кН.

3.По найденному разрывному усилию, пользуясь прилож. 1, подбираем канат типа ЛК-РО конструкции 6×36(1+7+7/7+14)+1о.с. (ГОСТ 7668-80) с характеристиками:

Временное сопротивление разрыву, Мпа…………….…………1960

Разрывное усилие, кН…………………………………..….………338

Диаметр каната, мм………………………………….…….………23,5

Масса 1000 м каната, кг…………………………………………..2130

Варианты заданий для расчета стального каната для стропа см. Приложение 13.

4.Расчет витого стропа (рис 1, б)

1. Определяют натяжение (кН) в одном канатном витке стропа:

S = Р/(mncos α),

гдеР - усилие приложенное к стропу, кН; т - количество ветвей стропа (для витого стропа m=2); n- число канатных витков в сечении одной ветви стропа(обычно n=7,19 или 37 витков); α- угол между ветвью стропа и направлением усилия P(рекомендуется a≤30 o).

2. Находят разрывное усилие (кН) в одном канатном витке стропа:

где к з -коэффициент запаса проч н ости (прилож. 2).

3. По расчетному разрывному усилию, пользуясь таблицей ГОСТа (прилож.1), подбирают стальной канат для витого стропа и определяют его технические данные.

4. Находят расчетный диаметрd с поперечного сечения ветви стропа (мм) в зависимости от количества витков в сечении одной ветви:

7 витков…………………………d c = 3d

19 витков……………………..…d c = 5d

37 витков……………………..…d c = 7d

где d- диаметр каната для витков стропа.

5.Находят минимальный диаметр захватного устройства:

D а = к с d с,

где к с - коэффициент соотношения диаметров захватного устройства и попереч­ного сечения ветви стропа; минимальная величина его составляет:

для захватного устройства двойной кривизны (типа ковша)….. к с ≥ 2

для захватного устройства цилиндрической формы ……………. к с ≥ 2

6.Подсчитывают длину каната (м) для изготовления витого стропа

L к = 2,2nl+2t ,

где l - требуемая длина стропа по центральному витку, м; t - шаг свивки стропа, равный 30d, м.

Решение. 1. Определяем натяжение в одном канатном витке стропа, задаваясь углом α - 20°, количеством канатных витков в одной ветви стропа n = 19 шт. и имея в виду, что Р = 10G o:

S = P/(mncosα) = 10×300/(2×19×0,94) = 84 кН.

2.Находим разрывное усилие в одном канатном витке:

R к = Sк з = 84*5 = 420 кН.

3.По прилож. I подбираем стальной канат типа JIK-PO кон­струкции 6×36 (1+7+7/7+14)+1о.с. (ГОСТ 7668-80) с характеристиками:

Временное сопротивление разрыву, Мпа………………………1960

Разрывное усилие, кН……………………………………………430,5

Диаметр каната, мм…………………………………………….……27

Масса 1000 м каната, кг…………………………………………..2800

4.Находим расчетный диаметр поперечного сечения ветви стропа

d c = 5d = 5*27 = 135 мм.

5.Подсчитываем минимальный диаметр захватного устройства

D з = к с d c = 4*135 = 540 мм.

6.Определяем длину каната для изготовления стропа, задаваясь его длиной l = 1,5 м:

L к = 2,2nl +2t = 2,2×19×1,5 + 2×0,8 = 64,3 м,гдеt =30d - 30×0,027= 0,8 м.

Варианты заданий для расчета витого стропа смПриложение 14.

Рис. 2. Расчетная схема монтажной балки

2. Максимальный изгибающий момент рассчитывают по формуле

М max = ,

где l – пролет монтажной балки.

3. Вычисляют требуемый момент сопротивления, по которому подбирают стандартный профиль

W тр = ,

где R – расчетное сопротивление, МПа (прил. 3);m – коэффициент условия работы(прил.4).

Пример 6. Рассчитать монтажную балку пролетом l=3 м для подъема аппарата массой 18 т одним полиспастом, закрепленным за средину балки, если известно, что масса полиспаста G п =1,2 т, усилие в сбегающей ветви S п =35 кН. Материал балки Ст.3.

1. Определяем усилие, действующее на монтажную балку в точке подвески полиспаста:

Р = 10·G о К п К д +10G п К п +S п =10·18·1,1·1,1+10·1,2·1,1+35=266 кН.

2. Максимальный изгибающий момент в монтажной балке рассчитываем по формуле

М max =
кН·см.

3. Находим требуемый момент сопротивления поперечного сечения монтажной балки

W тр = = 19950 / (0,85·0,1·210)=1117,6см 3 .

4. Для балки сплошного сечения (прил. 5) принимаем двутавр № 45 с W х = 1231см 3 , что удовлетворяет условию W х >W тр.

Варианты заданий для расчета монтажной балки см. Приложение 15.

Расчет траверс

Траверсы представляют собой жесткие грузозахватные приспособле-ния, предназначенные для подъема крупногабаритного, длинномерного, а также тонкостенного оборудования, например обечаек.

Одно из важных назначений траверсы при монтаже тонкостенных аппаратов – воспринимать возникающие сжимающие усилия и изгибающие моменты, чтобы не допустить деформацию поднимаемого аппарата.

Обычно траверса представляет собой балку, изготовленную из одиночных двутавров, швеллеров или стальных труб различных размеров. Иногда траверсу изготавливают из парных двутавров или швеллеров, соединенных стальными пластинами, или стальных труб, усиленных элементами жидкости.

При подъеме оборудования несколькими кранами разной грузоподъемности применяют уравновешивающие или балансирные траверсы, имеющие разные плечи.

Траверса работает на изгиб и на сжатие. Масса траверсы составляет незначительную долю от массы поднимаемого груза (как правило, не более
1 %), поэтому в практических расчетах изгибающим моментом в траверсе и прогибом от ее собственной массы можно пренебречь.

Варианты заданий для расчета сечения балки траверсы см. Приложение 16.

Приложение 3

Приложение 4

Приложение 5

Приложение 6

Швеллеры (ГОСТ 8240 72)

№ швел-лера Размеры, мм F,см 2 Масса 1м, кг Справочные величины для осей
h b s x – x y – y
I x , см 4 W x , см 3 r x , см I y , см 4 W y , см 3 r y , см
1 2 3 4 5 6 7 8 9 10 11 12
4,4 6,16 4,84 22,8 9,10 1,92 5,61 2,75 0,95
6,5 4,4 7,51 5,90 48,6 15,0 2,54 8,70 3,68 1,08
4,5 8,98 7,05 89,4 22,4 3,16 12,80 4,75 1,19

Продолжение приложения 6

1 2 3 4 5 6 7 8 9 10 11 12
4,5 10,90 8,59 174,0 34,8 3,99 20,40 6,46 1,37
4,8 13,30 10,40 304,0 50,6 4,78 31,20 8,52 1,53
4,9 15,60 12,30 491,0 70,2 5,60 45,40 11,00 1,70
14a 4,9 17,00 13,30 545,0 77,8 5,66 57,50 13,30 1,84
5,0 18,10 14,20 747,0 93,4 6,42 63,30 13,80 1,87
16a 5,0 19,50 15,30 823,0 103,0 6,49 78,80 16,40 2,01
5,1 20,70 16,30 1090,0 121,0 7,24 86,00 17,00 2,04
18a 5,1 22,20 17,40 1190,0 132,0 7,32 105,0 20,00 2,18
5,2 23,40 18,40 1520,0 152,0 8,07 113,0 20,50 2,20
20a 5,2 25,20 19,80 1670,0 167,0 8,15 139,0 24,20 2,35
5,4 26,70 21,00 2110,0 192,0 8,89 151,0 25,10 2,37
22a 5,4 28,80 22,60 2330,0 212,0 8,99 187,0 30,00 2,55
5,6 30,60 24,00 2900,0 242,0 9,73 208,0 31,60 2,60
24a 5,6 32,90 25,80 3180,0 265,0 9,84 254,0 37,20 2,78
6,0 35,20 27,70 4160,0 308,0 10,9 262,0 37,30 2,73
6,5 40,50 31,80 5810,0 387,0 12,0 237,0 43,60 2,84
7,0 46,50 36,50 7980,0 484,0 13,1 410,0 51,80 2,97
7,5 53,40 41,90 601,0 14,2 513,0 61,70 3,10
8,0 61,50 48,30 761,0 15,7 642,0 73,40 3,23

Приложение 7

Основные расчетные данные стальных бесшовных труб (ГОСТ 8732 78)

Диаметр, мм Толщина стенки, мм Площадь сечения F , см 2 Момент инерции I , см 3 Момент сопротивления W , см 3 Радиус инерции r , см Масса l м, кг
наружный d н внутрен-нийd в
1 2 3 4 5 6 7 8
12,3 18,1 23,6 28,9 33,9 38,7 43,2 29,0 41,0 51,6 60,6 68,6 75,3 81,0 3,47 3,40 3,34 3,27 3,21 3,15 3,09 9,67 14,21 18,55 22,69 26,63 30,38 33,93
13,1 19,2 25,1 30,8 36,2 41,3 46,2 32,8 46,5 58,4 69,1 78,3 86,5 93,4 3,68 3,62 3,55 3,48 3,42 3,36 3,30 10,26 15,09 19,73 24,17 28,41 32,45 36,30
Продолжение приложения 7
1 2 3 4 5 6 7 8
13,8 20,4 26,6 32,7 38,4 44,0 49,2 36,7 52,3 66,0 78,2 88,9 98,5 106,0 3,89 3,83 3,76 3,70 3,63 3,57 3,51 10,85 15,98 20,91 25,65 30,19 34,53 38,67
14,7 21,7 28,4 34,9 41,1 47,1 52,8 58,3 41,6 59,4 75,3 89,5 102,0 113,0 123,0 132,0 4,14 4,07 4,00 3,94 3,88 3,81 3,76 3,70 11,54 17,02 22,29 27,37 32,26 36,94 41,43 45,72
15,5 22,8 29,9 36,8 43,4 49,7 55,8 46,1 65,9 83,8 99,8 114,0 127,0 138,0 4,35 4,28 4,22 4,15 4,09 4,02 3,96 12,13 17,90 23,48 28,85 34,03 39,01 43,80
16,2 23,9 31,4 38,6 45,6 52,3 58,8 50,8 72,7 94,3 111,0 127,0 141,0 154,0 4,57 4,49 4,43 4,36 4,30 4,24 4,18 12,73 18,79 24,66 30,33 35,81 41,09 46,17
25,3 33,8 40,8 48,3 55,4 62,3 69,0 75,4 81,1 104,0 124,0 142,0 159,0 174,0 187,0 199,0 4,74 4,68 4,61 4,55 4,49 4,42 4,36 4,30 19,83 26,04 32,06 37,88 43,50 48,93 54,16 59,19
26,4 34,7 42,7 50,5 58,0 88,8 114,0 136,0 157,0 175,0 4,95 4,89 4,82 4,76 4,70 20,72 27,23 33,54 39,66 45,57

Продолжение приложения 7

1 2 3 4 5 6 7 8
65,3 72,4 79,2 192,0 207,0 221,0 4,64 4,57 4,51 51,30 56,98 62,15
27,5 36,2 44,6 52,8 60,7 68,4 75,8 82,9 96,6 124,0 149,0 171,0 192,0 212,0 228,0 243,0 5,17 5,10 5,03 4,97 4,90 4,85 4,78 4,72 21,60 28,41 35,02 41,43 47,65 53,66 59,48 65,1
28,8 37,9 46,8 55,4 63,8 71,9 79,7 5,41 5,35 5,28 5,21 5,15 5,09 5,03 22,64 29,79 36,75 43,50 50,06 56,43 62,59
30,5 40,2 49,6 58,8 67,7 76,4 84,8 93,0 5,74 5,66 5,60 5,53 5,47 5,40 5,34 5,28 23,97 31,57 46,17 53,17 59,98 66,59 73,00
35,4 46,7 57,8 68,6 79,2 6,65 6,59 6,51 6,46 6,38 27,82 36,70 45,38 53,86 62,15

Продолжение приложения 7

1 2 3 4 5 6 7 8
89,5 99,5 109,0 6,32 6,26 6,20 70,24 78,13 85,28
32,8 43,2 53,4 63,3 73,0 82,4 91,6 101,0 6,15 6,09 6,03 5,96 5,89 5,83 5,76 5,69 25,75 33,93 41,92 49,72 57,31 64,71 71,91 78,92,
35,4 46,7 57,8 68,6 79,2 89,5 99,5 109,0 6,65 6,59 6,51 6,46 6,38 6,32 6,26 6,20 27,82 36,70 45,38 53,86 62,15 70,24 78,13 85,28
36,9 48,7 60,5 72,2 83,2 94,2 104,4 114,6 6,97 6,90 6,83 6,76 6,69 6,62 6,55 6,48 29,15 38,47 47,60 56,52 65,25 73,79 82,12 90,26
40,1 53,0 65,6 78,0 90,2 7,53 7,47 7,40 7,33 7,27 31,52 41,63 51,54 61,26 70,78
59,6 73,8 87,8 102,0 8,38 8,32 8,25 8,19 46,76 57,95 68,95 79,76

Продолжение приложения 7

1 2 3 4 5 6 7 8
115,0 128,0 141,0 8,12 8,06 7,99 90,36 100,77 110,98
66,6 82,6 98,4 114,0 129,0 144,0 159,0 9,37 9,31 9,23 9,18 9,12 9,04 8,97 52,28 64,86 77,24 89,42 101,41 113,20 124,79

Приложение 8

Коэффициент приведения расчетной длины μ для стержней постоянного сечения

Приложение 9

Предельная гибкость сжатых элементов[λ]

Приложение 10

Коэффициент продольного изгиба φ центрально-сжатых элементов

Для стали марки Cт.3.

Гибкость λ
1,00 0,99 0,97 0,95 0,92 0,89 0,86 0,81 0,75 0,69 0,60 0,52 0,45 0,40 0,36 0,32 0,29 0,26 0,23 0,21 0,999 0,998 0,968 0,947 0,917 0,887 0,855 0,804 0,774 0,681 0,592 0,513 0,445 0,396 0,356 0,317 0,287 0,257 0,228 0,208 0,998 0,986 0,966 0,944 0,914 0,884 0,850 0,798 0,738 0,672 0,584 0,506 0,440 0,392 0,352 0,314 0,284 0,254 0,226 0,206 0,997 0,984 0,964 0,941 0,911 0,811 0,845 0,792 0,732 0,663 0,576 0,499 0,435 0,388 0,348 0,311 0,281 0,251 0,224 0,204 0,996 0,982 0,962 0,938 0,908 0,878 0,840 0,786 0,726 0,654 0,568 0,492 0,430 0,384 0,344 0,308 0,278 0,248 0,222 0,202 0,995 0,980 0,960 0,935 0,905 0,875 0,835 0,780 0,720 0,645 0,560 0,485 0,425 0,380 0,340 0,305 0,275 0,245 0,220 0,200 0,994 0,978 0,958 0,932 0,902 0,872 0,830 0,774 0,714 0,636 0,552 0,478 0,420 0,376 0,336 0,302 0,272 0,242 0,218 0,198 0,993 0,976 0,956 0,929 0,899 0,869 0,825 0,768 0,708 0,627 0,544 0,471 0,415 0,372 0,332 0,299 0,269 0,239 0,216 0,196 0,992 0,974 0,954 0,926 0,896 0,866 0,820 0,762 0,702 0,618 0,536 0,464 0,410 0,368 0,328 0,296 0,266 0,236 0,214 0,194 0,991 0,972 0,952 0,923 0,890 0,863 0,815 0,756 0,696 0,609 0,528 0,457 0,405 0,364 0,324 0,293 0,262 0,233 0,213 0,192

Приложение 11

Варианты заданий для подбора стального каната для электролебедки со следующим тяговыми усилиями:

Вариант
кН
Вариант
Go
Вариант
Go

Приложение 15

Варианты заданий для расчета монтажной балки для подъема аппарата с одним полиспастом:

Вариант
L,м
масса
Gп 1,2 1,3 1,5 1,6 1,7 1,8 1,9 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9
S п
Материал балки СТ3 СТ5 Сталь 45 Сталь 40Х СТ3 СТ5 Сталь 45 Сталь40Х СТ3 СТ5 Сталь 45 СТ3 СТ5 Сталь 45 Сталь40Х СТ3 СТ5 Сталь 45

Продолжение приложения 15

Вариант
L,м
масса
Gп 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,1 2,2
S п
Материл балки Сталь 40Х СТ3 СТ5 Сталь 45 Сталь40Х СТ3 СТ5 Сталь 45 Сталь40Х СТ3 СТ5 Сталь 45

Приложение 16

Варианты заданий для расчета сечения балки траверсы.

Вариант
Go,т.
Вариант
Go,т.

Kп и Кд принять равными 1,1

Приложение 17

Варианты заданий для расчета траверсы, работающую на сжатие для подъема горизонтального цилиндрического барабана:

Вариант
Go,т.
L,м.
Вариант
Go,т.
L,м.

Список литературы

Стропы из растительных и синтетических волокон должны изготав­ливаться с коэффициентом запаса прочности не менее 8.

ВНИМАНИЕ! Несмотря на то, что стропы рассчитаны с запасом прочности, недопустимо превышать грузоподъемность стропа, указанную на бирке.

От чего зависит натяжение ветвей стропа? На какой угол между ветвя­ми рассчитаны стропы?

Натяжение S ветви одноветвевого стропа равно массе груза Q (рис. 3.13). атяжение S в каждой ветви многоветвевого стропа рассчитывают по формуле

S = Q/(n cos б),

где п - число ветвей стропа; cos б - косинус угла наклона ветви стро­па к вертикали.

Конечно, стропальщик не должен определять нагрузки в ветвях стро­па, но он должен понимать, что при увеличении угла между ветвями возрастает натяжение ветвей стропа. На рис. 3.14 показана зависи­мость натяжения ветвей двухветвевого стропа от угла между ними. Вспомните, когда вы переносите ведра с водой, нагрузка возрастает при разведении рук. Растягивающее усилие в каждой ветви двухвет­вевого стропа превысит массу груза, если угол между ветвями превы­сит 120°.

Очевидно, что при увеличении угла между ветвями возрастает не толь­ко натяжение ветвей и вероятность их разрыва, но и сжимающая составляющая натяжения 5 СЖ (см. рис. 3.13), что может привести к раз­рушению груза.

ВНИМАНИЕ! Ветвевые канатные и цепные стропы рассчитаны так, что углы между ветвями не превышают 90°. Расчетный угол для текстиль­ных стропов 120°.



Для чего предназначены траверсы? Какие конструкции траверс приме­няют для строповки грузов?

Траверсы - это съемные грузозахватные приспособления, предназна­ченные для строповки длинномерных и крупногабаритных грузов. Они предохраняют поднимаемые грузы от воздействия сжимающих усилий, которые возникают при использовании стропов.

По конструкции траверсы разделяют на плоскостные и простран­ственные.

Плоскостные траверсы (рис. 3.15, а) применяют для строповки длин­номерных грузов. Основной частью траверсы является балка 2, или ферма, которая воспринимает изгибающие нагрузки. К балке подве­шиваются канатные или цепные ветви 1.

Траверсы с возможностью перемещения обойм 4 вдоль балки назы­вают универсальными (рис. 3.15, б). В обоймах установлены уравни­тельные блоки 5, которые обеспечивают равномерное распределение нагрузок между ветвями траверсы S 1 = S 2 . По этой причине такую тра­версу называют балансирной. Уравнительные блоки также могут при­меняться в конструкциях канатных стропов с числом ветвей более трех.

Пространственные траверсы (рис. 3.15, в) применяют для строповки объемных конструкций, машин, оборудования.

Разноплечую балансирную траверсу (рис. 3.15, г) применяют для подъе­ма груза двумя кранами, она позволяет распределить нагрузки между кранами пропорционально их грузоподъемностям.

Признаки браковки траверс:

Ø отсутствие клейма 3 или бирки;

Ø трещины (обычно возникают в сварочных швах);

Ø деформации балок, распорок, рам со стрелой прогиба более 2 мм на 1 м длины;

Ø повреждения крепежных и соединительных звеньев.

Какие бывают захваты?

Захваты являются наиболее совершенными и безопасными грузозах­ватными приспособлениями, основное преимущество которых - со­кращение ручного труда. Захваты применяют в тех случаях, когда приходится перемещать однотипные грузы. В связи с большим раз­нообразием перемещаемых грузов существует множество различных конструкций захватов. Большинство из них можно отнести к одному из указанных далее типов.

Клещевые захваты (рис. 3.16, а) удерживают груз рычагами 1 за его выступающие части.

Фрикционные захваты удерживают груз за счет сил трения. Рычажные фрикционные захваты (рис. 3.16, 6) зажимают груз с помощью рыча­гов 1. Рычажно-канатные фрикционные захваты (рис. 3.16, в) имеют канаты 3 с блоками, их применяют для строповки тюков, кип.

В эксцентриковых захватах (рис. 3.16, г) основной деталью является эксцентрик 4, который при повороте надежно зажимает листовые материалы.


Существуют также грузозахватные приспособления, обеспечивающие автоматическую (без участия стропальщика) расстроповку груза.

Ответ. Должен быть не менее 5 при машинном приводе и не менее 3 – при ручном (п. 3.4.7.3).

Вопрос 132. Каким путем допускается сращивание цепей?

Ответ. Допускается путем электро– или кузнечно-горновой сварки новых вставленных звеньев или с помощью специальных соединительных звеньев. После сращивания цепь осматривается и испытывается нагрузкой в соответствии с документацией (п. 3.4.7.6).

Вопрос 133. Для чего допускается применять пеньковые канаты?

Ответ. Допускается применять для изготовления стропов. При этом коэффициент запаса прочности должен быть не менее 8 (п. 3.4.8.1).

Вопрос 134. Какие надписи должны быть на бирках (ярлыках), которыми в обязательном порядке снабжаются канаты, шнуры и веревки?

Ответ. Должны быть указаны инвентарный номер, допустимая грузоподъемность и дата следующего испытания (п. 3.4.8.3).

Вопрос 136. На что необходимо обращать внимание при осмотре канатов?

Ответ. Необходимо обращать внимание на отсутствие гнили, гари, плесени, узлов, разлохмачиваний, промятостей, надрывов, надрезов и других дефектов. Каждый виток каната должен отчетливо выделяться, крутка должна быть равномерной. У пеньковых канатов, применяемых для оттяжки, не должно быть перетертых или размочаленных прядей (п. 3.4.8.9).

Вопрос 137. В какие периоды должны осматриваться канаты и шнуры в процессе эксплуатации?

Ответ. Должны осматриваться через каждые 10 дней (п. 3.4.8.11).

Вопрос 138. Для чего предназначаются монтерские когти?

Ответ. Предназначаются для работы на деревянных и деревянных с железобетонными пасынками опорах линий электропередачи и связи, на железобетонных опорах воздушных линий электропередачи (ВЛ) 0,4-10 и 35 кВ, а также на цилиндрических железобетонных опорах диаметром 250 мм ВЛ 10 кВ (п. 3.5.1).

Вопрос 139. Каков срок службы когтей и лазов (кроме шипов)?

Ответ. Срок службы 5 лет (п. 3.5.12).

Вопрос 140. В какие сроки подвергаются статическим испытаниям когти и лазы?

Ответ. Подвергаются испытаниям не реже одного раза в 6 месяцев (п. 3.5.16).

Вопрос 141. Какой должна быть масса пояса?

Ответ. Должна быть не более 2,1 кг (п. 4.1.7).

Вопрос 142. Какую динамическую нагрузку должен выдерживать пояс?

Ответ. Должен выдерживать нагрузку, возникающую при падении груза массой 100 кг с высоты, равной двум длинам стропа (фала) (п. 4.1.9).

Вопрос 143. Из какого материала должен быть изготовлен строп (фал) пояса для электрогазосварщика и других работников, выполняющих огневые работы?

Ответ. Должен быть изготовлен из стального каната или цепи?

Вопрос 144. С какой целью применяются ловители с вертикальным страховочным канатом?

Ответ. Применяются для обеспечения безопасности работника при подъеме и спуске по вертикальной и наклонной (более 75° к горизонту) плоскостям (п. 4.3.1).

Вопрос 145. Каков принцип работы ловителя и в целом системы?

Ответ. При срыве работника под его весом через систему пояс-строп корпус ловителя поворачивается, и страховочный канат защемляется между подвижным и неподвижным кулачками, стопоря ловитель на страховочном канате и удерживая работника от перемещения вниз (п. 4.3.3).

Вопрос 146. Для каких целей должны применяться каски?

Ответ. Должны применяться для защиты головы работника от механических повреждений падающими сверху предметами или при соударении с конструктивными и другими элементами, для защиты от воды, поражения электрическим таком при работах на высоте по строительству, монтажу, демонтажу, выполнения ремонтных, наладочных и других работ (п. 4.5.1).

Вопрос 147. Что должны обеспечивать каски?

Ответ. Должны обеспечивать максимальное передаваемое усилие при номинальной энергии удара 50 Дж не более 5 кН (500 кгс) – для касок первой категории качества и не более 4,5 кН (450 кгс) – для касок высшей категории качества (п. 4.5.3).

Вопрос 148. Каких цветов выпускается корпус касок?

Ответ. Выпускается четырех цветов:

белого – для руководящего состава, начальников цехов, участков, работников службы охраны труда, государственных инспекторов органов надзора и контроля;

красного – для мастеров, прорабов, инженерно-технических работников, главных механиков и главных энергетиков;

желтого и оранжевого – для рабочих и младшего обслуживающего персонала (п. 4.5.6).

Вопрос 149. Какую маркировку имеет каждая каска?

Ответ. Имеет следующую маркировку:

на середине верхней части козырька каски методом литья должно быть нанесено название каски – «Строитель»;

на внутренней стороне козырька или корпуса методом литья или формования должно быть нанесено: товарный знак предприятия-изготовителя, обозначение стандарта, размер каски, дата выпуска (месяц, год) (п. 4.5.16).

Вопрос 150. Каков гарантийный срок хранения и эксплуатации касок?

Ответ. Гарантийный срок составляет 2 года с даты изготовления (п. 4.5.21).

Вопрос 151. Какие устройства безопасности должны иметь механизмы и оборудование с механическим приводом?

Ответ. Должны иметь блокировки самопроизвольного пуска, легкодоступные и четко распознаваемые для оператора устройства экстренной остановки. Опасные движущиеся части должны иметь защитные ограждения (п. 5.1.4).

Вопрос 152. Какие требования предъявляются к гаечным ключам?

Ответ. Зевы гаечных ключей должны соответствовать размерам гаек или головок болтов и не иметь трещин, забоин. Не допускается наращивать рычагами ключи, не рассчитанные на работу с увеличенным плечом воздействия (п. 5.2.10).

Вопрос 153. Какими рукавицами должны быть обеспечены работники, занятые на работах с использованием ручного пневматического инструмента ударного или вращательного действия?

Ответ. Должны быть обеспечены рукавицами с антивибрационной прокладкой со стороны ладони (п. 5.3.6).

Вопрос 154. На какое напряжение должен применяться ручной электрифицированный инструмент?

Ответ. Должен применяться, как правило, на напряжение не выше 42 В. Корпус ручного электрифицированного инструмента I класса (при напряжении выше 42 В, не имеющий двойной изоляции) должен быть заземлен (занулен) (п. 5.4.1).

Вопрос 155. Кто допускается к работе с ручным электрифицированным инструментом?

Ответ. Допускаются лица не моложе 18 лет, прошедшие специальное обучение, сдавшие соответствующий экзамен и имеющие запись об этом в удостоверении по охране труда (п. 5.4.6).

Вопрос 156. Что должен иметь ручной пиротехнический инструмент?

Ответ. Должен иметь:

защитное устройство или экран;

устройство, предохраняющее от случайного выстрела;

устройство, предохраняющее от выстрела, если насадка пистолета не уперта в рабочую поверхность (п. 5.5.2).

Вопрос 157. Кто допускается к работам с применением ручного пиротехнического инструмента?

Ответ. Допускаются работники, обученные по безопасному его применению (п. 5.5.7).

Вопрос 158. Какие работники допускаются к самостоятельной работе с ручным пиротехническим инструментом поршневого типа?

Ответ. Допускаются работники не моложе 18 лет, проработавшие в организации не менее 1 года, имеющие квалификацию не ниже третьего разряда, прошедшие курс обучения по утвержденной программе, сдавшие экзамены квалификационной комиссии и получившие удостоверение на право работы с ручным пиротехническим инструментом поршневого типа (п. 5.5.10).

Вопрос 159. Кто должен иметь удостоверение на право руководства работами с ручным пиротехническим инструментом?

Ответ. Должны иметь мастера, прорабы, механики и другие специалисты, связанные с эксплуатацией этого инструмента, которые должны проходить курс обучения по программе для специалистов и получить удостоверение на право руководства этими работами (п. 5.5.11).

Вопрос 160. Что должен получить перед началом работы работник, допущенный к самостоятельной работе с ручным пиротехническим инструментом (оператор)?

Ответ. Должен получить:

наряд-допуск на право производства работ;

пиротехнический инструмент;

патроны (не более установленной нормы);

средство индивидуальной защиты (защитную каску, противошумные наушники, защитный щиток, кожаные перчатки или рукавицы) (п. 5.5.12).


Шаг р, мм Частота вращения ведущей звёздочки, об/мин
12,7 7,1 7,3 7,6 7,9 8,2 8,5 8,8 9,4
15,875 7,2 7,4 7,8 8,2 8,6 8,9 9,3 10,1 10,8
19,05 7,2 7,8 8,4 8,9 9,4 9,7 10,8 11,7
25,4 7,3 7,8 8,3 8,9 9,5 10,2 10,8 13,3
31,75 7,4 7,8 8,6 9,4 10,2 11,8 13,4 -
38,1 7,5 8,9 9,8 10,8 11,8 12,7 - -
44,45 7,6 8,1 9,2 10,3 11,4 12,5 - - -
50,8 7,7 8,3 9,5 10,8 - - - -

2.4. Конструирование звёздочек роликовых цепей

Звёздочки изготавливают из сталей 40 и 45 по ГОСТ 1050-88 или 40Л и 45Л по ГОСТ 977-88 с закалкой до 40…50 HRC э. Конструкция звёздочки разрабатывается с учетом стандарта на профиль зубьев и поперечное сечение обода по ГОСТ 591-69.

Форму поперечного сечения обода выбирают в зависимости от соотношения толщины диска С и диаметра обода D e . При относительно большой толщине диска С и D e £ 200 мм применяют сплошной диск или диск с отверстиями, позволяющими экономить металл. При D e > 200 мм рекомендуется применять составную конструкцию.

Положение ступицы относительно диска с ободом принимается по конструктивным соображениям. При консольной установке звёздочки на выходном конце вала, её, с целью уменьшения изгибающего момента, следует располагать как можно ближе к опоре.

Конструирование звёздочки однорядной роликовой цепи производится по следующим рекомендациям.

Ширина зуба, мм:

Зуб звёздочки может выполняться со скосом (рис. 2.3,а ) или с закруглением (рис. 2.3,б );

Угол скоса g = 20 о , фаска зуба f » 0,2b ;

Радиус закругления зуба (наибольший) ;

Расстояние от вершины зуба до линии центров дуг закругления ;

радиус закругления r 4 = 1,6 мм при шаге цепи р £ 35 мм, r 4 = 2,5 мм при шаге цепи р > 35 мм;

Длина наибольшей хорды, для звёздочек без смещения центров дуг впадин, мм:

,

со смещением центров дуг впадин:

Толщина, мм: ;

Диаметр проточки, мм: .

Внутренний диаметр, мм:

где [t ] = 20 МПа – допускаемое напряжение при кручении;

Наружный диаметр, мм:

Длина, мм: ;

- размеры шпоночного паза: ширину b и глубину t 2 выбираем в соответствии с внутренним диаметром ступицы из таблицы 2.7, длину шпонки принимают конструктивно из значений стандартного ряда на 5…10 мм меньше длины ступицы.

Таблица 2.7

Шпонки призматические (ГОСТ 23360 – 78)

Диаметр вала d , мм Сечение шпонки Глубина паза Фаска, мм Длина l , мм
b , мм h , мм Вала t 1 , мм Ступицы t 2 , мм
Свыше 12 до 17 Свыше 17 до 22 3,5 2,3 2,8 0,25…0,4 10…56 14…70
Свыше 22 до 30 3,3 0,4…0,6 18…90
Свыше 30 до 38 Свыше 38 до 44 3,3 22…110 28…140
Свыше 44 до 50 Свыше 50 до 58 Свыше 58 до 65 5,5 3,8 4,3 4,4 36…160 45…180 50…200
Свыше 65 до 75 7,5 4,9 56…220
Свыше 75 до 85 Свыше 85 до 95 5,4 0,6…0,8 63…250 70…280

Примечания: 1. Длины призматических шпонок l выбирают из следующего ряда: 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200, 220, 250. 2. Пример условного обозначения шпонки размерами b = 16 мм, h = 10 мм, l = 50 мм: Шпонка 16´10´50 ГОСТ 23360 – 78.

2.5. Разработка рабочего чертежа звёздочки роликовой цепи

Рабочие чертежи звёздочек приводных роликовых цепей должны быть выполнены в соответствии с требованиями стандартов ЕСКД и ГОСТ 591.

На изображении звёздочки (рис. 2.3) указывают:

Ширину зуба звёздочки;

Ширину венца (для многорядной звёздочки);

Радиус закругления зуба (в осевой плоскости);

Расстояние от вершины зуба до линии центров дуг закруглений (в осевой плоскости);

Диаметр обода (наибольший);

Радиус закругления у границы обода (при необходимости);

Диаметр окружности выступов;

Шероховатость поверхности профиля зубьев, торцовых поверхностей зубьев, поверхности выступов и шероховатость поверхностей закругления зубьев (в осевой плоскости).

На чертеже звёздочки в правом верхнем углу помещают таблицу параметров. Размеры граф таблицы, а также размеры, определяющие расположение таблицы на поле чертежа, приведены на рис. 2.4.

Таблица параметров зубчатого венца звёздочки состоит из трех частей, которые отделяются друг от друга сплошными основными линиями:


первая часть - основные данные (для изготовления);

Вторая часть - данные для контроля;третья часть - справочные данные.

В первой части таблицы параметров приводят:

Число зубьев звёздочки z ;

Параметры сопрягаемой цепи: шаг р и диаметр ролика d 3 ;

Профиль зуба по ГОСТ 591 с надписью: «Со смещением» или «Без смещения» (центров дуг впадин);

Группа точности по ГОСТ 591.

Во второй части таблицы параметров приводят:

Размер диаметра окружности впадин D i и предельные отклонения (для звёздочек с чётным числом зубьев) или размер наибольшей хорды L x и предельные отклонения (для звёздочек с нечётным числом зубьев);

Задачи 81-90

Произвести расчет вертикального ковшевого элеватора производительностью Q , предназначенного для транспортирования материала насыпной плотностью r , средней крупностью а с на высоту Н . Элеватор установлен на открытой площадке.

Исходные данные для решения задачи выбрать из таблицы 5.

Таблица 5

№ задачи

Q , т/ч

r , т/м3

а с , мм

Транспортируемый материал

Глина сухая

Колчедан флотационный

Сера комовая

Песок сухой

Известняк

Мел дробленный

Зола сухая

Боксит дробленный

Методические указания: , с.216...218, пример 12.

Методические указания к выполнению практических работ

Практическая работа № 1

Выбор стальных канатов и цепей, блоков, звёздочек и барабанов .

1. Выбор стальных канатов и цепей .

Точный расчёт канатов, сварных и пластинчатых цепей, вследствии неравномерности распределения напряжений, очень сложный. Поэтому их расчёт выполняется по нормам Госгортехнадзора.

Канаты и цепи подбирают по ГОСТу в соответствии с соотношением:

F р £ F р. m

где F р. m - разрывное усилие каната (цепи), принимаемое по таблицам

соответствующих ГОСТов на канаты (цепи);

F р - расчётное разрывное усилие каната (цепи), определяемое по


F р = F m ах · n,

где n - коэффициент запаса прочности, принимаемый по данным Пра-

вил Госгортехнадзора в зависимости от назначения каната и

режима работы механизма. Его значение для канатов nk и цепей

nц приведены в таблице П1 и П2.

F m ах - максимальное рабочее усилие ветви каната (цепи):

Fmах = G/ z · h n , кН,

Здесь G - вес груза, кН;

z - число ветвей каната (цепи), на которых подвешен груз;

h n - КПД полиспаста (табл. П3).

Число ветвей каната, на которых подвешен груз, равно:

z = u · а ,

где а - число ветвей, наматываемых на барабан. Для простого (оди

нарного) полиспаста а = 1, а для сдвоенного а = 2;

u - кратность полиспаста.

По полученному значению разрывного усилия F р из условия F р £ F р. m

по таблицам ГОСТов подбираем размеры каната (цепи).

Пример 1. Подобрать канат для механизма подъёма мостового крана грузоподъёмностью G = 200 кН. Высота подъёма груза Н = 8м. Режим работы – лёгкий (ПВ = 15%). Полиспаст сдвоенный кратностью u = 4.

Исходные данные:

G = 200 кН – вес поднимаемого груза;

Н = 8м – высота подъёма груза;

Режим работы – лёгкий (ПВ = 15%);

а = 2 – число ветвей, наматываемых на барабан;

u = 4 – кратность полиспаста.

Максимальное рабочее усилие одной ветви каната:

Fmах = G/ z · h n = 200/ 8 · 0,97 = 25,8 кН,

где z = u · а = 4 · 2 = 8 – число ветвей, на которое подвешен груз;

h n - КПД полиспаста, по табл. П3 при u = 4 для полиспаста с подшип-

ником качения h n = 0,97 Расчётное разрывное усилие: F р = F m ах · n к = 5 · 25,8 = 129 кН,

где n к – коэффициент запаса прочности каната, для крана с машинным

приводом при лёгком режиме работы n к = 5 (табл. П1).

По ГОСТ 2688-80 (табл. П5) выбираем канат типа ЛК – Р 6х19+1 о. с. с разрывным усилием F р. m . = 130 кН при пределе прочности G в = 1470 МПа, диаметр каната d к = 16,5 мм. Фактический запас прочности каната:

n ф = F р. m . · z · h n/ G = 130 · 8 · 0.97/200 = 5.04 > n к = 5,

Следовательно, выбранный канат подходит.

Пример 2. Подобрать сварную калиброванную цепь для ручной тали грузоподъёмностью G = 25 кН. Кратность полиспаста u = 2 (полиспаст простой).

Исходные данные:

G = 25 кН – грузоподъёмность тали;

u = 2 – кратность полиспаста;

а = 1 – полиспаст простой.

Fmах = G/ z · h б = 25/2 · 0,96 = 13 кН,

где z = u · а = 2 · 1 = 2 – число ветвей, на которое подвешен груз;

h б = 0,96 - КПД цепного блока. Расчётное разрывное усилие: F р = F m ах · n ц = 3 · 13 = 39 кН,

где n ц – коэффициент запаса прочности цепи, для сварной калиброванной

цепи при ручном приводе n ц = 3 (табл. П2).

По таблице П6 выбираем сварную калиброванную цепь с разрывным усилием F р. m . = 40 кН, у которой диаметр прутка d ц = 10 мм, внутренняя длина (шаг) цепи t = 28 мм, ширина звена В = 34 мм.

Фактический запас прочности:

n ф = F р. m . · z · h n/ G = 40 · 2 · 0.96/25 = 3,1 > n ц = 3.

Выбранная цепь подходит.

Пример 3. Подобрать грузовую пластинчатую цепь для механизма подъёма с машинным приводом грузоподъёмностью G = 30 кН. Груз подвешен на двух ветвях (z = 2).


Исходные данные:

G = 30 кН – вес поднимаемого груза;

z = 2 – число ветвей, на которых подвешен груз.

Максимальное рабочее усилие одной ветви цепи:

F m ах = G/ z · h зв = 30/2 · 0,96 = 15,6 кН,

где h зв = 0,96 - КПД звездочки.

Расчётное разрывное усилие: F р = F m ах · n ц = 5 · 15,6 = 78 кН,

где n ц – коэффициент запаса прочности цепи, для пластинчатой цепи с

машинным приводом n ц = 5 (табл. П2).

По таблице П7 принимаем цепь с разрушающим усилием F р. m . = 80 кН, у которой шаг t = 40 мм, толщина пластины S = 3 мм, ширина пластины h = 60 мм, число пластин в одном звене цепи n = 4, диаметр средней части валика d = 14 мм, диамерт шейки валика d 1 = 11 мм, длина валика в = 59 мм.

Фактический запас прочности:

n ф = F р. m . · z · h n/ G = 80 · 2 · 0.96/30 = 5,12 > n ц = 5.

Выбранная цепь подходит.

2. Расчёт блоков, звёздочек и барабанов.

Минимально допустимый диаметр блока (барабана) по дну ручья (канавки) определяется по нормам Госгортехнадзора:

Д б ³ (е – 1) d к , мм

где е - коэффициент, зависящий от типа механизма и режима работы, вы-

бираемый по нормативным данным Правил Госгортехнадзора

(табл. П4);

d к - диаметр каната, мм.

Размеры блоков нормализованны.

Диаметр блока (барабана) для сварных некалиброванных цепей определяют по соотношениям:

для механизмов с ручным приводом Д б ³ 20 d ц ;

для механизмов с машинным приводом Д б ³ 30 d ц ;

где d ц - диаметр прутка стали, из которого изготовлена цепь.

Диаметр начальной окружности звёздочки для сварной калиброванной цепи (диаметр по оси прутка, из которого изготовлена цепь) определяют по формуле:

Д н . о . = t/ sin 90 ° /z , мм

где t - внутренняя длина звена цепи (шаг цепи), мм;

z - число гнёзд на звёздочке, принимают z ³ 6.

Диаметр начальной окружности звёздочки для пластинчатой цепи опреде-

ляют по формуле:

Д н . о . = t/ sin 180 ° /z , мм

где t - шаг цепи, мм;

z - число зубьев звёздочки, принимают z ³ 6.

Барабаны для канатов применяют с однослойной и многослойной навивкой, с гладкой поверхностью и с винтовой нарезкой на поверхности обечайки, с односторонней и двухсторонней навивкой каната.

Диаметр барабана, как и диаметр блока, определяют по Правилам Госгортехнадзора:

Д б ³ (е – 1) d к , мм.

Длину барабана при двухсторонней навивке каната определяют по формуле:

а при односторонней навивке:

https://pandia.ru/text/78/506/images/image005_7.png" width="124" height="32 src=">,

где z – количество рабочих витков каната;

https://pandia.ru/text/78/506/images/image007_5.png" width="18" height="23 src=">,

Где b – расстояние между осями ручьёв крайних блоков, принимается по таблице П8;

hmin – расстояние между осями барабана и осью блоков в крайнем верхнем положении;

Допускаемый угол отклонения набегающей на барабан ветви каната от вертикального положения, =4…6°.

Толщина стенки барабанов может быть определена из условия прочности при сжатии:

https://pandia.ru/text/78/506/images/image009_4.png" width="48" height="29"> - допускаемое напряжение на сжатие, Па, при расчётах принимают:

80МПа для чугуна С4 15-32;

100МПа для сталей 25Л и 35Л;

110МПа для сталей Ст3 и Ст5.

Для литых барабанов толщину стенки можно определить по эмпирическим формулам:

для чугунных барабанов https://pandia.ru/text/78/506/images/image010_1.png" width="26" height="25 src=">= 0,01 Дб +3 мм, а затем произвести её проверку на сжатие. Должно быть:

https://pandia.ru/text/78/506/images/image012_2.png" width="204" height="72"> мм

где t =28 мм – внутренняя длина звена (шаг) цепи;

z 6 – число гнёзд на блоке (звёздочка), принимаем z =10.

Пример 5. По данным примера 3 определите диаметр начальной окружности звёздочки.

Диаметр начальной окружности звёздочки

мм,

где t =40 мм – шаг цепи;

z 6 – число зубьев звёздочки, принимаем z =10.

Пример 6. Определить основные размеры литого чугунного барабана по данным примера 1..png" width="156 height=44" height="44">,мм

где = 16,5 мм – диаметр каната;

е – коэффициент, зависящий от типа механизма и режима работы, для кранов с Машиным приводом при лёгком режиме работы е =20 (табл. П4)

Дб =(20-1)∙16,5=313,5 мм, принимаем значение диаметра барабана из нормального ряда Дб =320 мм (табл. П8).

Определяем длину барабана. Барабан с двухсторонней нарезкой. Рабочую длину одной половины барабана определяем по формуле:

мм

где t – шаг витков, для барабана с канавками

t= dк+ (2…3)=16,5+(2…3)=(18,5…19,5) мм, принимаем t= 19 мм;

zo =1,5…2 – число запасных витков каната, принимаем zo =2 витка;

– количество рабочих витков каната

https://pandia.ru/text/78/506/images/image019_0.png" width="210 height=36" height="36"> мм

Полная длина барабана:

=2(lp+l3)+lo , мм,

Где l3 – длина барабана, необходимая для крепления каната;

https://pandia.ru/text/78/506/images/image022_0.png" width="16" height="15">=4-6° - допускаемый угол отклонения набегающий на барабан ветви каната от вертикального положения, принимаем = 6°.

l0 =200-2∙4/80∙tg6°=99.1 мм

принимаем l0 =100 мм.

Таким образом, полная длинна барабана

=2(608+60)+100=1436 мм, принимаем

=1440 мм = 1,44 м

Толщину стенки барабана определяем по формуле:

https://pandia.ru/text/78/506/images/image024_0.png" width="47 height=19" height="19">мм.

Толщина стенки литого барабана должна быть не менее 12 мм.

Практическая работа № 2

Расчёт лебёдок и подъёмных механизмов талей с ручным и электрическими приводами по заданным условиям.

1. Расчёт лебёдок с ручным приводом

последовательность расчёта лебёдки с ручным приводом.

1) Выбрать схему подвески груза (без полиспаста или с полиспастом).

2) По заданной грузоподъёмности подобрать канат.

3) Определить основные размеры барабана и блоков.

4) Определить момент сопротивления на валу барабана от веса груза Тс и момент на валу рукоятки, создаваемый усилием рабочего Тр.

Момент сопротивления от веса груза

Н∙ м,

где Fmax - максимальное рабочие усилие в ветви каната, Н; Дб – диаметр барабана, м.

Момент на валу рукоятки:

Н∙м,

где Рр – усилие одного рабочего, принимается

Рр =100…300 Н

n – Число рабочих;

https://pandia.ru/text/78/506/images/image001_21.png" width="15" height="17 src=">.png" width="80 height=48" height="48">

где η – КПД лебёдки.

6) Произвести расчёт открытых зубчатых передач и валов (методика их расчёта изучалась в разделе «Детали машин» предмета «Техническая механика»).

7) Определить основные размеры рукоятки. Диаметр стержня ручки определяют из условия прочности при изгибе:

м,

где l1 – длина стержня ручки, принимается l1 =200…250 мм для одного рабочего и l1 =400…500 мм для двух рабочих;

https://pandia.ru/text/78/506/images/image029_1.png" width="29" height="23 src=">=(60…80) МПа=(60…80)∙106Па.

Толщину рукоятки в опасном сечении рассчитывают на совместное действие изгиба и кручения:


Ширину рукоятки принимают равной

где G - грузоподъемность лебедки, кН;

- окружную скорость приводной рукоятки обычно принимают

=50...60 м/мин.

Пример 7. Произвести расчет механизма подъема ручной лебедки, предназначенной для подъема груза весом G= 15 кН на высоту Н= 30м. Количество рабочих n =2. КПД лебедки h =0,8. Поверхность барбана гладкая, число слоев навивки каната на барабан m =2. Кратность полиспаста u =2. Полиспаст простой (а =1).

Исходные данные:

G =15кН - вес поднимаемого груза;

Н =10м - высота подъема груза;

n =2 - количество рабочих;

h =0,8 - КПД лебедки;

m =2 - число слоев навивки каната на барабан;

поверхность барабана гладкая;

u =2 - кратность полиспаста;

а =1 - число ветвей, наматываемых на барабан.

Выбор каната.

Максимальное рабочие усилие в одной ветви каната:

Fmax= 15/2×0,99=7,6 кН,

где z= u ×а= 2 - число ветвей, на которых висит груз;

КПД полиспаста по табл. П3 для полиспаста кратностью u =2 на подшипниках качения 0,99.

Расчетное разрывное усилие:

Fp= × Fmax =5,5×7,6=41,8 кН,

где n к - коэффициент запаса прочности каната, для грузовой лебедки с ручным приводом n к =5,5 (табл. П1).

По ГОСТ 26.88-80 (табл. П5) выбираем канат типа ЛК-Р 6х19 + 1 о. с. с разрывным усилием Fp. m.= 45,45 кН при пределе прочности 1764 МПа, диаметр каната d к =9,1 мм.

Фактический запас прочности каната:

n ф = Fр. m. · z · hn/G = 45,45 · 2 · 0.99/15 = 6 > n к = 5,5.

Определение основных размеров барабана.

Минимально допустимый диаметр барабана:

Дб ³ (е – 1)dк, мм

где е - коэффициент, зависящий от типа механизма и режима работы, для

грузовых лебедок с ручным приводом е =12 (табл. П4);

- диаметр каната, мм, тогда

Дб ³ (12 – 1)9,1=100,1мм

Принимаем из нормального ряда Дб =160мм (табл. П8).

Рабочую длину барабана при многослойной навивке каната определяем по формуле:

где t шаг витков, для гладкого барабана; t = dk =9.81 мм;

Lk длина каната без учёта запасных витков

Lk=H∙u=30∙2=60 м

Полная длина барабана с односторонней навивкой

l б = l р + l в + l з ,

где l б =(1,5…2)∙ t – длина барабана, необходимая для запасных витков,

l б =(1,5…2)∙9,81=13,65…18,2 мм,

принимаем l б =18 мм

l з длина барабана, необходимая для закрепления каната