Почему наса прячет «лунный грунт» от всего мира (4 фото). Последние исследования Луны

На протяжении 50 лет исследователи и научные группы со всего мира желают узнать подробную информацию о той или иной планете. Это не случайно, ведь многие мечтают выяснить происхождение и значимость других планетоидов и небесных тел. Что такое лунный грунт и как он выглядит? Это и многое другое вы можете выяснить, прочитав данную статью.

Общая информация о спутнике Земли

Не секрет, что Луна - это естественный спутник нашей планеты. Он является одним из самых ярких на земном небосводе. Расстояние между Землей и ее естественным спутником составляет более 300 тысяч километров. Удивительно, но Луна - это единственный объект вне Земли, на котором побывал человек.

Землю и Луну часто называют парными небесными. Это связано с тем, что их масса и размер имеют достаточно близкие показатели. На Луне неоднократно проводились исследования. Доказано, что там действует сила притяжения. На поверхности естественного спутника человек с легкостью может перевернуть небольшой автомобиль.

Многих интересует, какая Луна на самом деле. Она вращается вокруг Земли. В зависимости от положения естественного спутника, можно видеть его абсолютно по-разному. Луна совершает полный круг вокруг Земли за 27 суток.

Каждый из нас видел на Луне более темные или синие участки. Что это на самом деле? Много лет назад считалось, что это так называемые Данное понятие существует и сегодня. Но на самом деле это окаменевшие участки, через которые раньше извергалась лава. По данным исследований, это происходило много миллиардов лет назад. Рассмотрим ниже, как называется лунный грунт.

В 1897 году американский геолог впервые употребил термин "реголит". Сегодня он используется для определения лунного грунта.

Цвет реголита

Реголит - это лунный грунт. Его исследуют на протяжении многих лет. Главный вопрос, на который пытаются ответить научные исследователи со всего мира: возможно ли на такой почве что-либо выращивать.

Какой грунта? Каждый из нас может смело утверждать, что луна имеет серебряно-желтый окрас. Именно такой мы видим ее с нашей планеты. Однако это совсем не так. По данным исследователей, лунный грунт имеет приближенный к черному - темно-коричневый окрас. Нужно отметить, что для определения цвета почвы на территории естественного спутника, не стоит ориентироваться на фотографии, которые там сделаны. Не секрет, что фотоаппараты немного искажают реальный окрас.

Толщина грунта на Луне

Самый верхний слой Луны реголитный. Исследования грунта важны для создания чертежей и дальнейшего строительства баз. Считается, что лунная почва возникает в результате заполнения старых кратеров новообразованными. Толщина грунта вычисляется путем соотношения глубины так называемого моря и его сыпучей части. Наличие в кратере камней связано с содержанием в нем скальных образований. Благодаря приведенной в статье информации, можно сделать вывод, что толщина реголитного слоя на Луне отличается в зависимости от исследуемой территории.

К сожалению, на сегодняшний день невозможно исследовать всю поверхность Луны. Тем не менее уже существуют методы, которые позволяют изучать достаточно большую территорию естественного спутника.

Химический состав

Лунный грунт содержит в себе большое количество химических микроэлементов. Среди них кремний, кислород, железо, титан, алюминий, кальций и магний. Информация о была получена благодаря методам дистанционной и Стоит отметить, что существует несколько способов исследования лунного грунта. Главная их проблема - это разделение внимания на возраст реголита и его состав.

Негативное воздействие лунной пыли на организм человека

Ученые Национального управления по воздухоплаванию и пространства изучали плюсы и минусы планируемого освоения и переселения на Луну. Они доказали, что лунная пыль необычайно опасна для человеческого организма. Известно, что так называемые пылевые бури активизируются раз в две недели. Ученые также доказали, что регулярное вдыхание лунной пыли может привести к серьезным заболеваниям.

На поверхности легких существуют специальные волокна, на которых собирается вся пыль. В дальнейшем организм избавляется от нее при помощи кашля. Стоит отметить, что слишком маленькие частицы не прикрепляются к волокнам. Организм человека не адаптирован к негативному воздействию лунной пыли из-за ее небольшого размера. Ученые считают, что этот фактор необходимо учесть при разработке и строительстве баз на поверхности естественного спутника.

Негативное воздействие пыли, которая создает бури на поверхности естественного спутника, подтвердила лунная экспедиция "Аполлон 17". Один из астронавтов, который входил в ее состав, спустя некоторое время, проведенное на Луне, начал жаловаться на плохое самочувствие и лихорадку. Было установлено, что ухудшение состояния здоровья было связано с вдыханием лунной пыли, которая оказалась на борту вместе со скафандрами. Астронавт не столкнулся с осложнениями благодаря фильтрам, установленным на корабле, которые в кратчайшие сроки очистили воздух.

Исследование темной стороны

Совсем недавно Китай представил всему миру свой план исследование поверхности Луны. По предварительным данным, спустя два года на естественном спутнике будет установлено новое астрономическое устройство, которое позволит провести целый ряд исследований. Особенность в том, что оно будет расположено на темной стороне Луны. Устройство будет изучать геологические условия на поверхности естественного спутника.

Еще одним пунктом в плане является расположение радиотелескопа. На сегодняшний день радиопередачи с Земли недоступны на темной стороне спутника.

Органические вещества в составе лунного грунта

После одной из миссий "Аполлона" было выявлено, что привезенный с экспедиции лунный грунт содержит в своем составе органические вещества, а именно аминокислоты. Не секрет, что именно они участвуют в формировании белков и являются важным фактором в развитии всех живых организмов на Земле.

Ученые доказали, что лунный грунт не пригоден для развития всех известных нам форм жизни. Существует четыре версии появления аминокислот в составе лунного грунта. По мнению ученых, они могли оказаться на Луне, доставленные с Земли вместе с астронавтами. По другим версиям - это выбросы газов, солнечный ветер и астероиды.

После проведения целого ряда исследований ученые доказали, что, вероятнее всего, аминокислоты попали в состав лунного грунта из-за загрязнений с Земли, а также этому способствовали и на поверхность естественного спутника.

Первые полеты на Луну

В январе 1959 года в Советском Союзе был осуществлен которая вывела на траекторию полета к Луне автоматическую межпланетную станцию "Луна-1". Это первое устройство, которое достигло второй космической скорости.

Уже в сентябре стартовала автоматическая межпланетная станция "Луна-2". В отличие от первой, она достигла небесное тело, а также доставила туда вымпел с изображением герба СССР.

Менее чем через месяц в космос была выпущена третья автоматическая межпланетная станция. Ее вес составлял более 200 килограммов. На ее корпусе располагались солнечные батареи. В течение получаса станция при помощи встроенной фотокамеры автоматически сделала более 20 снимков Луны. Благодаря этому человечество впервые увидело обратную сторону естественного спутника. Именно в октябре 1959 года люди узнали, какая Луна на самом деле.

Магма на поверхности небесного тела

При одном из последних исследований Луны были выявлены под ее верхним слоем каналы с застывшей магмой. Ученые утверждают, что благодаря такой находке можно выяснить настоящий возраст нашего естественного спутника. Стоит отметить, что на сегодняшний день хронология неизвестна.

Толщина лунной коры составляет 43 километра. Последние исследования Луны показали, что вся она пронизана подземными каналами. Ученые предполагают, что они образовались почти сразу после возникновения естественного спутника. Практически все каналы заполнены застывшей магмой. На местах их расположения присутствуют более высокие гравитационные поля. По предварительным данным, возраст подземных каналов составляет более четырех миллиардов лет. Такая находка является толчком для дальнейших исследований естественного спутника.

Продажа земельных участков на Луне

В последнее время появилось большое количество агентств, которые предлагают купить образцы лунного грунта или вовсе обзавестись земельным участком на другой планете. Агента, который может предоставить вам подобные услуги, можно найти в абсолютно любой стране. Не секрет, что покупать земельные участки на других планетах и небесных телах любят знаменитости и политики. В нашей статье вы можете выяснить, стоит ли покупать участок на Луне или же это очередная выдумка мошенников.

Сегодня существует большое количество агентств, которые предлагают любому желающему приобрести участок на Луне или лунный паспорт. Они утверждают, что спустя некоторое время человечество сможет беспроблемно бороздить просторы космоса и путешествовать на то или иное небесное тело. Именно по этой причине, по мнению агентов, покупка земельного участка уже сегодня - это выгодно и удобно.

Продажа земельных участков на других планетах и небесных телах началась еще 30 лет назад. Тогда американец Дэннис Хоуп нашел недочеты в международных законах и объявил себя владельцем всех небесных тел, которые вращаются вокруг Солнца. Он подал заявление на оформление собственности и сообщил об этом всем государствам. Следующим этапом была регистрация собственного агентства. На территории Российской Федерации зарегистрировано более 100 владельцев земельных участков на Луне.

На самом деле, агентство Дэнниса Хоупа было зарегистрировано в Неваде. В данном штате есть огромное количество законов, которые позволяют оформить любой документ за определенную сумму. Таким образом, Дэннис Хоуп продает не право на собственность, а самую обыкновенную красиво оформленную макулатуру. Исходя из этого, не один человек не может претендовать на земельный участок на Луне. Это подтверждает и законопроект, принятый 27 января 1967 года. Проанализировав всю информацию, которая приведена в нашей статье, можно сделать вывод, что покупка земельного участка на Луне - это пустая трата денег.

Подводим итоги

Луна - это естественный спутник Земли. Ученые исследуют его на протяжении многих лет. За это время они выяснили, что Луна имеет идентичные с нашей планетой размеры, а лунная пыль необычайно опасна для здоровья. Сегодня достаточно популярна покупка земельных участков на территории естественного спутника. Однако мы не советуем совершать такое приобретение, поскольку это пустая трата средств.

Считается, что американцы привезли с Луны 378 кг лунного грунта и камней. Во всяком случае, об этом заявляет НАСА. Это почти четыре центнера. Ясно, что доставить такое количество грунта могли только астронавты: никаким космическим станциям это не под силу.

Лунный грунт (архив НАСА)

Камни сфотографированы, переписаны и являются постоянными статистами «лунных» фильмов НАСА. Во многих таких фильмах в роли эксперта и комментатора выступает астронавт-геолог «Аполлона-17», доктор Хариссон Шмидт, якобы лично собравший на Луне много таких камней.

Логично ожидать, что при таком лунном богатстве Америка будет им потрясать, всячески демонстрировать и уж кому-кому, а своему главному сопернику отвалит от щедрот килограммов 30-50. Нате, мол, исследуйте, убеждайтесь в наших успехах... Но с этим-то как раз почему-то не получается. Грунта нам дали мало. Зато «свои» (опять же, по данным НАСА) получили 45 кг лунного грунта и камней.

Астронавт Гаррисон Шмитт собирает лунный грунт (архив НАСА)

Правда, некоторые особо въедливые исследователи провели подсчет по соответствующим публикациям научных центров и не смогли обнаружить убедительных свидетельств того, что эти 45 кг дошли до лабораторий даже западных ученых. Более того, по ним получается, что в настоящее время в мире из лаборатории в лабораторию кочует не более 100 г американского лунного грунта, так что обычно исследователь получал полграмма горной породы.

Т. е. НАСА относится к лунному грунту, как скупой рыцарь к золоту: хранит заветные центнеры в своих подвалах в надежно запертых сундуках, выдавая исследователям лишь жалкие граммы. Не избежал этой участи и СССР.

Образец лунного грунта (архив НАСА)

В нашей стране в то время головной научной организацией по всем исследованиям лунного грунта являлся Институт геохимии АН СССР (ныне - ГЕОХИ РАН). Заведующий отделом метеоритики этого института доктор М.А. Назаров сообщает: «Американцами было передано в СССР 29,4 грамма (!) лунного реголита (проще говоря, лунной пыли) из всех экспедиций «Аполлон», а из нашей коллекции образцов «Луны-16, 20 и 24» было выдано за рубеж 30,2 г». Фактически американцы обменялись с нами лунным прахом, который может доставить любая автоматическая станция, хотя космонавты должны бы были привезти увесистые булыжники, и интереснее всего посмотреть на них.

Что НАСА собирается делать с остальным лунным «добром»? О, это - «песня».

«В США принято решение сохранить главную массу доставленных образцов в полной неприкосновенности до тех пор, пока не будут разработаны новые, более совершенные способы их изучения», - пишут компетентные советские авторы, из-под пера которых вышла не одна книга по лунному грунту.

«Необходимо расходовать минимальное количество материала, оставив нетронутой и незагрязненной бóльшую часть каждого отдельного образца для изучения будущими поколениями ученых», - разъясняет позицию НАСА американский специалист Дж. А. Вуд.

Очевидно, американский специалист полагает, что на Луну уже не полетит никто и никогда - ни сейчас, ни в будущем. А посему нужно беречь центнеры лунного грунта пуще глаза. Одновременно унижены современные ученые: они своими приборами могут рассмотреть каждый отдельный атом в веществе, а им отказано в доверии - не доросли. Или рылом не вышли. Такая настойчивая забота НАСА о будущих ученых более похожа на то, что это - удобный предлог, чтобы скрыть неутешительный факт: в ее кладовых нет ни лунных камней, ни центнеров лунного грунта.

Еще одна странность: после завершения «лунных» полетов НАСА вдруг стало испытывать острую нехватку денег на их исследование. Вот что пишет по состоянию на 1974 год один из американских исследователей: «Значительная часть образцов будет храниться в качестве резерва в центре космических полетов в Хьюстоне. Сокращение ассигнований уменьшит число исследователей и замедлит темпы исследований».

Астронавт «Аполлон-17» Шмитт б ерет образец лунного грунта (архив НАСА)

Потратив $25 млрд на то, чтобы доставить лунные образцы, НАСА вдруг обнаружило, что денег на их исследование не осталось...

Интересна и история с обменом советского и американского грунта. Вот сообщение от 14 апреля 1972 года главного официального издания советского периода - газеты «Правда»:

«13 апреля Президиум Академии наук СССР посетили представители НАСА. Состоялась передача образцов лунного грунта из числа доставленных на Землю советской автоматической станцией «Луна-20». Одновременно советским ученым был передан образец лунного грунта, полученного экипажем американского корабля «Аполлон-15». Обмен совершен в соответствии с соглашением между Академией наук СССР и НАСА, подписанным в январе 1971 года».

Теперь нужно пройтись по срокам. Июль 1969 г. Астронавты «Аполлона-11» якобы привозят 20 кг лунного грунта. СССР из этого количества не дают ничего. У СССР к этому моменту лунного грунта еще нет.

Сентябрь 1970 г. Наша станция «Луна-16» доставляет на Землю лунный грунт, и отныне советские ученым есть что предложить в обмен. Это ставит НАСА в трудное положение. Но НАСА рассчитывает, что в начале 1971 года оно сможет автоматически доставить на Землю свой лунный грунт, и в расчете на это в январе 1971 г. соглашение об обмене уже заключено. Но самого обмена не происходит еще 10 месяцев. Видимо, у США что-то не заладилось с автоматической доставкой. И американцы начинают тянуть резину.

«Луна-16» (архив РГАНТ)

Июль 1971 г. В порядке доброй воли СССР в одностороннем порядке передает США 3 г грунта от «Луны-16», но от США не получает ничего, хотя соглашение об обмене подписано уже полгода назад, а в кладовых НАСА якобы уже лежит 96 кг лунного грунта (от «Аполлона-11», «Аполлона-12» и «Аполлона-14»). Проходит еще 9 месяцев.

Апрель 1972 г. Наконец-то НАСА передает образец лунного грунта. Он якобы доставлен экипажем американского корабля «Аполлон-15», хотя со времени полета «Аполлона-15» (июль 1971 г.) прошло уже 8 месяцев. В кладовых НАСА к этому времени якобы уже лежат 173 кг лунных камней (от «Аполлона-11», «Аполлона-12», «Аполлона-14» и «Аполлона-15»).

Советские ученые получают от этих богатств некий образец, параметры которого в газете «Правда» не сообщаются. Но благодаря доктору М.А. Назарову мы знаем, что этот образец состоял из реголита и не превышал 29 г по массе.

Очень похоже на то, что примерно до июля 1972 года у США вообще не было настоящего лунного грунта. Видимо, где-то в первой половине 1972 года у американцев появились первые граммы настоящего лунного грунта, который был доставлен с Луны автоматическим способом. Вот только тогда у НАСА и проявилась готовность к совершению обмена.

Лунный грунт (архив НАСА)

А в последние годы лунный грунт у американцев (точнее, то, что они выдают за лунный грунт) и вовсе начал исчезать. Летом 2002 года огромное количество образцов лунного вещества - сейф весом почти 3 центнера - исчезло из запасников музея Американского космического центра НАСА им. Джонсона в Хьюстоне. Вы никогда не пробовали украсть 300-килограммовый сейф с территории космического центра? И не пробуйте: слишком тяжелая и опасная работа. А вот воришкам, на след которых полиция вышла на диво быстро, это легко удалось. Тиффани Фоулер и Тэд Робертс, работавшие в здании в период пропажи, были арестованы специальными агентами ФБР и НАСА в одном из ресторанов штата Флорида. Впоследствии в Хьюстоне был взят под стражу и третий подельщик, Шэ Саур, а затем - и четвертый участник преступления, Гордон Мак Вотер, способствовавший транспортировке краденого. Воры намеревались сбыть бесценные свидетельства лунной миссии НАСА по цене $1000-5000 за грамм через сайт минералогического клуба в Антверпене (Голландия). Стоимость украденного, по информации из-за океана, составляла более $1 млн.

Через несколько лет - новое несчастье. В США в районе Вирджиния-Бич из автомобиля неизвестными злоумышленниками были выкрадены две небольших запаянных пластиковых коробки в форме диска с образцами метеоритного и лунного вещества, судя по имевшейся на них маркировке. Образцы такого рода, сообщает Space, передаются НАСА специальным инструкторам «для учебных целей». Прежде чем получить подобные образцы, преподаватели проходят специальный инструктаж, в ходе которого их обучают правильно обращаться с этим национальным достоянием США. А «национальное достояние», оказывается, так просто украсть... Хотя это похоже не на кражу, а на инсценировку кражи в целях избавления от улик: нет грунта - нет «неудобных» вопросов.

Фрагмент фильма Ю.Мухина «Максимум лжи и глупости»

«Соотношение изотопов азота в американских «лунных» образцах не лунное, а земное»

Время от времени в интернете попадаются невежды, утверждающие что -де американцы никому не дали исследовать свой привезенный с Луны грунт; только что в комментах к посту Зеленого Кота об их лунном микроспутнике узрел очередное такое чудо. Так что решил написать небольшой пост о лунном грунте за пределами США, на основании этого вот треда с лунного форума а-базы.

Начнем с того, что американский лунный грунт СССР получил уже в 1971 году, когда программа "Аполлон" еще не была даже завершена. Образцы грунта привезенные экспедициями А-11 и А-12 были получены советской стороной в обмен на грунт Луны-16:

В том же году в Докладах Академии наук СССР выходит публикация в которой сравнивается грунт полученный А-11 и Луной-16: А.П. Виноградов, В.И. Нефедов, В.С. Урусов, Н.М. Жаворонков. Рентгеноэлектронное исследование лунного реголита из Морей Изобилия и Спокойствия // ДАН СССР. 1971. Т.201. №4. C.957-960. Работа посвящена так называемому "неокисляемому железу" на поверхности частиц лунного реголита: во всех образцах (и в советских, и американских) было обнаружено металлическое железо, которого нет в метеоритах и земных породах.



В течении следующих нескольких лет в СССР продолжили выходить работы, посвященные исследованию грунта А-11 и А-12:

И.И. Антипова-Каратаева, Ю.И. Стахеев, К.П. Флоренский. Оптические характеристики реголита из Моря Изобилия, Моря Спокойствия и Океана Бурь // Лунный грунт из Моря Изобилия, М.: Наука, 1974, сс. 496-500

М.В. Ахманова, Б.В. Дементьев, А.В. Карташев, А.В. Карякин, М.Н. Марков, М.М. Сущинский. Инфракрасная спектроскопия реголита лунных морей // Лунный грунт из Моря Изобилия, М.: Наука, 1974, сс. 503-511

И.Д. Шевалеевский, М.С. Чупахин. Породообразующие и редкие элементы в лунном грунте из Моря Спокойствия и Океана Бурь // Лунный грунт из Моря Изобилия, М.: Наука, 1974, сс. 297-298

Разумеется, что все работы проводились в пределах СССР и на советском же научном оборудовании. Например в статье Шевалеевского-Чупахина написано, что масс-спектральный анализ проводился на приборе МХ-3301. Вот он:

Само собой, ученые СССР/РФ получали и иные образцы грунта программы Аполлон. Так, в 1972 году был передан лунный грунт полученный экспедицией "Аполлон-14":

FRA MAURO SAMPLES PROVIDED TO SOVIET ACADEMY
Samples of rock and soil collected by U.S. astronauts from the Moon"s Fra Mauro formation have been provided to the Academy of Sciences of the U.S.S.R. for study by Soviet scientists.
The samples were delivered to scientists Y.I. Belyayev, M.S. Chupankhin and K.P. Florenskiy, who returned to the Soviet union Sunday (January 23) after participating in the Third Annual Lunar Science Conference, January 10-13, at the NASA Manned Spacecraft Center in Houston, Texas.
Three grams (one-tenth of an ounce) of material from Apollo 14, were provided by the National Aeronautics and Space Administration for study by Soviet Scientists as part of U.S. - Soviet agreements for exchange of lunar samples.
The NASA has previously provided Soviet scientists with samples from the Apollo 11 and 12 missions and has received samples collected by the Soviet Union"s unmanned Luna 16 spacecraft.
During their stay in Houston, the three Soviet scientists consulted with U.S. scientists and viewed a wide range of lunar rocks and soils stored at the Manned Spacecraft Center, while participating in the selection of samples to return to their colleagues in the USSR.
The Russian samples include a small chip from an unusual crystalline rock designated sample 14310, one of the most widely studied of the Apollo 14 rocks. They also received a small piece of a 9 kilogram (20 pound) boulder designated sample 14321, which was collected on the Apollo 14 mission as well as a variety of core samples, soils and polished thin sections.
Before receiving the Apollo 14 samples, the delegation of Soviet scientists joined with more than 600 scientists from the united States and 13 foreign countries in reporting on results of their analyses of U.S. and Soviet lunar samples at the annual lunar science conference in Houston.

А в 1973 году советской стороной были получены образцы лунного грунта последних двух лунных экспедиций по программе "Аполлон":

73-028 APOLLO 16 AND 17 SAMPLES EXCHANGED WITH USSR
Rock and soil samples from the Descartes and Taurus-Littrow lunar landing sites today were delivered to two representatives of the Academy of Sciences of the Soviet Union. The moon fragments were collected by U.S. astronauts during the Apollo 16 and 17 missions in 1972.
The handover of three grams from each mission was made by Dr. Paul Gast, Chief of Planetary and Earth Sciences Division of the Johnson Space Center. The samples were accepted by Vladimir Shcherbina and Lev Tarasov of the Academy of Sciences of the USSR Vernadsky Institute. Shcherbina and Tarasov delivered scientific papers at the recently completed Fourth Annual Lunar Science Conference at JSC.
JSC Lunar Sample Curator Dr. Michael Duke said that the samples presented to the Soviets represented the widest variety of soil and distinct rock types from Apollo 16 and 17.
The exchanges of samples from lunar landing missions is part of an agreement between the two countries for joint study of lunar material. The Soviets have also received samples from Apollo 11, 12, 14, and 15. The United States has received samples from the Soviet Union"s unmanned Luna 16 and 20 spacecraft which brought back to earth samples of soil from the Moon"s Sea of Fertility."

Есть даже работа команды Тарасова, Кудряшовой, Ульянова, Барышева и Золотарёва из Новосибирского Института ядерной физики им. Будкера, в которой приводятся результаты анализа образцов доставленных всеми успешными миссиями "Аполлонов" и "Лун": Геохимия редких элементов в лунных породах различного типа на основе данных микрорентгенофлуоресцентной спектроскопии на пучках синхротронного излучения (2001)

В этом месте прижатый фактами к стенке конспиролог может что-то ляпнуть про то, что СССР/РФ и советские/российские ученые также состоят в лунном заговоре НАСА. Его можно добить небольшим (и, конечно же, совсем неполным) списком публикаций по лунному грунту из иных стран мира, ехидно спросив -- а Китай тоже в заговоре с НАСА состоял и состоит?

Австралия
Compston, W., Williams, I. S., & Meyer, C. U-Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. American Geophysical Union and NASA, Lunar and Planetary Science Conference, 14th, Houston, TX, Mar. 14-18, 1983 Journal of Geophysical Research, Supplement (ISSN 0148-0227), vol. 89, Feb. 15, 1984, p. B525-B534.

Англия
Runcorn, S. K., Collinson, D. W., O"Reilly, W., Battey, M. H., Stephenson, A., Jones, J. M Magnetic properties of Apollo 11 lunar samples. Proc. R. Soc. London, A325, 157-74

Abell, P. I.; Draffan, C. H.; Eglinton, G.; Hayes, J. M.; Maxwell, J. R.; Pillinger, C. T. Organic analysis of the returned Apollo 11 lunar sample. Proceedings of the Apollo 111 Lunar Science Conference, Vol.2, pp. 1757 to 1773

S. K. Runcorn, D. W. Collinson, W. O"Reilly, A. Stephenson, M. H. Battey, A. J. Manson and P. W. Readman. Magnetic Properties of Apollo 12 Lunar Samples. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. Vol. 325, No. 1561 (Nov. 9, 1971), pp. 157-174

Geake, J. E., Walker, G., Mills, A. A., & Garlick, G. F. J. Luminescence of Apollo lunar samples. Proceedings of the Lunar Science Conference, vol. 2, p.2265

Германия
W. Herr1, U. Herpers, B. Hess, B. Skerra, R. Woelfle. Determination of Manganese-53 by Neutron Activation and Other Miscellaneous Studies on Lunar Dust. Science 30 Jan 1970: Vol. 167, Issue 3918, pp. 747-749

Wänke, H., Wlotzka, F., Jagoutz, E., & Begemann, F. Composition and structure of metallic iron particles in lunar "fines". Geochimica et Cosmochimica Acta Supplement, Volume 1. Proceedings of the Apollo 11 Lunar Science Conference held 5-8 January, 1970 in Houston, TX. Volume 1: Mineraolgy and Petrology.

Индия
N.Bhandari, J.N.Goswami, D.Lal, D.Macdougall and A.S. Tamhane. A study of the vestigial records of cosmic rays in lunar rocks using a thick section techniques // Proc. Indian Acad, Sciences, LXXVI, No.1, A. July 1972. pp. 27‑50

Bhandari, N., Goswami, J., & Lal, D. Surface irradiation and evolution of the lunar regolith. Proceedings of the Lunar Science Conference, vol. 4, p.2275

Италия
Cavarretta, G., Coradini, A., Funiciello, R., Fulchignoni, M., Taddeucci, A., &
Trigila, R. Glassy particles in Apollo 14 soil 14163,88: Peculiarities and genetic considerations. Proceedings of the Lunar Science Conference, vol. 3, p.1085

Fulchignoni, M., Funiciello, R., Taddeucci, A., & Trigila, R. Glassy spheroids in lunar fines from Apollo 12 samples 12070,37; 12001,73; and 12057,60. Proceedings of the Lunar Science Conference, vol. 2, p.937

Канада
John A. Maxwell, Sydney Abbey, W. H. Champ. Chemical Composition of Lunar Material. Science 30 Jan 1970: Vol. 167, Issue 3918, pp. 530-531

Китай
Li Wenzhong Yang Suizi Xu Yun(Kunming Metallurgical Institute) Wang Daode Cao Jianqiu Hou Wei(Institute of Geochemistry, Academia Sinica);PETROGRAPHIC AND MINERALOGICAL STUDIES ON APOLLO-17 MARE BASALT[J];Geochimica;1980-03

Hu Guohui Zhong Honghai Xu Hanqing Ling Yuyuan(Analysis Institute of Guangdong Province)Yi Weixi (Institute of Geochemistry, Academia Sinica);14 MeV NEUTRON ACTIVATION ANALYSIS OF APOLLO-17 MARE BASALT[J];Geochimica;1980-03

Ji Guiquan Wu Weifang Li Shi(Institute of Sigh Energy Physics, Academia Sinica)Zhong Puhe (Institute of Geochemistry, Academia Sinica);MOSSBAUER STUDY OF APOLLO-17 MARE BASALT[J];Geochimica;1981-02

Норвегия
Brunfelt, A. O.; Heier, K. S.; Nilssen, B.; Sundvoll, B.; Steinnes, E. Distribution of elements between different phases of Apollo 14 rocks and soils. Proceedings of the Lunar Science Conference, vol. 3, p.1133

Польша
P. Staszczuk. Thermogravimetry Q-TG studies of surface properties of lunar nanoparticles. Journal of Thermal Analysis and Calorimetry. December 2011, Volume 106, Issue 3, pp 853-857

Финляндия
H. B. WiiK, Pentti Ojanpera. Chemical Analyses of Lunar Samples 10017, 10072, and 10084. Science 30 Jan 1970: Vol. 167, Issue 3918, pp. 531-532

Франция
Deuterium Content of Lunar Material. Merlivat, L., Lelu, M., Nief, G., & Roth, E. Abstracts of the Lunar and Planetary Science Conference, volume 5, page 498, (1974)

P. Rochette, J. Gattacceca, A.V. Ivanov, M.A. Nazarov, N.S. Bezaeva. Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples // Earth and Planetary Science Letters. Volume 292, Issues 3-4, 1 April 2010, Pages 383-391) (совместная статья французских и российских ученых)

Швейцария
Stettler, A.; Eberhardt, P.; Geiss, J.; Grögler, N.; Maurer, P. r39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. Proceedings of the Fourth Lunar Science Conference (Supplement 4, Geochimica et Cosmochimica Acta) Vol. 2, pp. 1865-1888

ЮАР
Willis, J. P.; Ahrens, L. H.; Danchin, R. V.; Erlank, A. J.; Gurney, J. J.; Hofmeyr, P. K.; McCarthy, T. S.; Orren, M. J. Some interelement relationships between lunar rocks and fines, and stony meteorites. Proceedings of the Second Lunar Science Conference, Vol. 2, pp. 1123-1138

Южная Корея
Kim, Y. K., Lee, S. M., Yang, J. H., Kim, J. H., & Kim, C. K. Mineralogical and chemical studies of lunar fines 10084,148 and 12070,98. Proceedings of the Lunar Science Conference, vol. 2, p.747

Япония
Hiroshi Hidaka, Shigekazu Yoneda. Sm and Gd isotopic shifts of Apollo 16 and 17 drill stem samples and their implications for regolith history // Geochimica et Cosmochimica Acta. Volume 71, Issue 4, 15 February 2007, Pages 1074-1086

И т.д., и т.п. -- таких публикаций масса, всё перечислять замучаешься.

Ну и деталь напоследок: по состоянию на март 2011 год, в лабораториях 535 ученых мира (включая американских) находилось 10 293 образцов лунного реголита, которые НАСА временно выдало тем для исследований ().

P.S. Не забывайте -- в разговоре с лунным конспирологом никогда не стоит пытаться доказать ему тот факт, что американцы летали на Луну! Это совершенно безнадежная затея. Доказывать надо так называемые четыре тезиса Старого, попутно всячески давая опровергателю возможность осознать всю бездну его глупости и невежества:
1. Опровергатели ни ухом ни рылом в вопросах о которых пытаются судить.
2. Опровергатели не в состоянии найти в материалах НАСА никаких противоречий которые позволяли бы заподозрить фальсификацию.
3. Опровергатели вынуждены сами врать и фальсифицировать.
4. Опровергатели не в состоянии свести концы с концами в собственных теориях.

P.S. Чтоб два раза не вставать. Очень в блоге Зеленого кота на тему хранения лунного грунта. Если кто не читал -- рекомендую.

В США после того, как на снимке, который сделан во время высадки астронавтов на Луне, был обнаружен человека без скафандра, разгорелся скандал. Это не единственная нестыковка. Об одной из них – в данном материале.

Считается, что американцы привезли с Луны 378 кг лунного грунта и камней. Во всяком случае, об этом заявляет НАСА. Это почти четыре центнера. Ясно, что доставить такое количество грунта могли только астронавты: никаким космическим станциям это не под силу.

Камни сфотографированы, переписаны и являются постоянными статистами «лунных» фильмов НАСА. Во многих таких фильмах в роли эксперта и комментатора выступает астронавт-геолог «Аполлона-17», доктор Хариссон Шмидт, якобы лично собравший на Луне много таких камней.

Логично ожидать, что при таком лунном богатстве Америка будет им потрясать, всячески демонстрировать и уж кому-кому, а своему главному сопернику отвалит от щедрот килограммов 30-50. Нате, мол, исследуйте, убеждайтесь в наших успехах... Но с этим-то как раз почему-то не получается. Грунта нам дали мало. Зато «свои» (опять же, по данным НАСА) получили 45 кг лунного грунта и камней.

Правда, некоторые особо въедливые исследователи провели подсчет по соответствующим публикациям научных центров и не смогли обнаружить убедительных свидетельств того, что эти 45 кг дошли до лабораторий даже западных ученых. Более того, по ним получается, что в настоящее время в мире из лаборатории в лабораторию кочует не более 100 г американского лунного грунта, так что обычно исследователь получал полграмма горной породы.

Т. е. НАСА относится к лунному грунту, как скупой рыцарь к золоту: хранит заветные центнеры в своих подвалах в надежно запертых сундуках, выдавая исследователям лишь жалкие граммы. Не избежал этой участи и СССР.

В нашей стране в то время головной научной организацией по всем исследованиям лунного грунта являлся Институт геохимии АН СССР (ныне – ГЕОХИ РАН). Заведующий отделом метеоритики этого института доктор М.А. Назаров сообщает: «Американцами было передано в СССР 29,4 грамма (!) лунного реголита (проще говоря, лунной пыли) из всех экспедиций «Аполлон», а из нашей коллекции образцов «Луны-16, 20 и 24» было выдано за рубеж 30,2 г». Фактически американцы обменялись с нами лунным прахом, который может доставить любая автоматическая станция, хотя космонавты должны бы были привезти увесистые булыжники, и интереснее всего посмотреть на них.

Что НАСА собирается делать с остальным лунным «добром»? О, это – «песня».

«В США принято решение сохранить главную массу доставленных образцов в полной неприкосновенности до тех пор, пока не будут разработаны новые, более совершенные способы их изучения», – пишут компетентные советские авторы, из-под пера которых вышла не одна книга по лунному грунту.

«Необходимо расходовать минимальное количество материала, оставив нетронутой и незагрязненной бóльшую часть каждого отдельного образца для изучения будущими поколениями ученых», – разъясняет позицию НАСА американский специалист Дж. А. Вуд.

Очевидно, американский специалист полагает, что на Луну уже не полетит никто и никогда – ни сейчас, ни в будущем. А посему нужно беречь центнеры лунного грунта пуще глаза. Одновременно унижены современные ученые: они своими приборами могут рассмотреть каждый отдельный атом в веществе, а им отказано в доверии – не доросли. Или рылом не вышли. Такая настойчивая забота НАСА о будущих ученых более похожа на то, что это – удобный предлог, чтобы скрыть неутешительный факт: в ее кладовых нет ни лунных камней, ни центнеров лунного грунта.

Еще одна странность: после завершения «лунных» полетов НАСА вдруг стало испытывать острую нехватку денег на их исследование. Вот что пишет по состоянию на 1974 год один из американских исследователей: «Значительная часть образцов будет храниться в качестве резерва в центре космических полетов в Хьюстоне. Сокращение ассигнований уменьшит число исследователей и замедлит темпы исследований».

Потратив $25 млрд на то, чтобы доставить лунные образцы, НАСА вдруг обнаружило, что денег на их исследование не осталось...

Интересна и история с обменом советского и американского грунта. Вот сообщение от 14 апреля 1972 года главного официального издания советского периода – газеты «Правда»:

«13 апреля Президиум Академии наук СССР посетили представители НАСА. Состоялась передача образцов лунного грунта из числа доставленных на Землю советской автоматической станцией «Луна-20». Одновременно советским ученым был передан образец лунного грунта, полученного экипажем американского корабля «Аполлон-15». Обмен совершен в соответствии с соглашением между Академией наук СССР и НАСА, подписанным в январе 1971 года».

Теперь нужно пройтись по срокам. Июль 1969 г. Астронавты «Аполлона-11» якобы привозят 20 кг лунного грунта. СССР из этого количества не дают ничего. У СССР к этому моменту лунного грунта еще нет.

Сентябрь 1970 г. Наша станция «Луна-16» доставляет на Землю лунный грунт, и отныне советские ученым есть что предложить в обмен. Это ставит НАСА в трудное положение. Но НАСА рассчитывает, что в начале 1971 года оно сможет автоматически доставить на Землю свой лунный грунт, и в расчете на это в январе 1971 г. соглашение об обмене уже заключено. Но самого обмена не происходит еще 10 месяцев. Видимо, у США что-то не заладилось с автоматической доставкой. И американцы начинают тянуть резину.

Июль 1971 г. В порядке доброй воли СССР в одностороннем порядке передает США 3 г грунта от «Луны-16», но от США не получает ничего, хотя соглашение об обмене подписано уже полгода назад, а в кладовых НАСА якобы уже лежит 96 кг лунного грунта (от «Аполлона-11», «Аполлона-12» и «Аполлона-14»). Проходит еще 9 месяцев.

Апрель 1972 г. Наконец-то НАСА передает образец лунного грунта. Он якобы доставлен экипажем американского корабля «Аполлон-15», хотя со времени полета «Аполлона-15» (июль 1971 г.) прошло уже 8 месяцев. В кладовых НАСА к этому времени якобы уже лежат 173 кг лунных камней (от «Аполлона-11», «Аполлона-12», «Аполлона-14» и «Аполлона-15»).

Советские ученые получают от этих богатств некий образец, параметры которого в газете «Правда» не сообщаются. Но благодаря доктору М.А. Назарову мы знаем, что этот образец состоял из реголита и не превышал 29 г по массе.

Очень похоже на то, что примерно до июля 1972 года у США вообще не было настоящего лунного грунта. Видимо, где-то в первой половине 1972 года у американцев появились первые граммы настоящего лунного грунта, который был доставлен с Луны автоматическим способом. Вот только тогда у НАСА и проявилась готовность к совершению обмена.

А в последние годы лунный грунт у американцев (точнее, то, что они выдают за лунный грунт) и вовсе начал исчезать. Летом 2002 года огромное количество образцов лунного вещества – сейф весом почти 3 центнера – исчезло из запасников музея Американского космического центра НАСА им. Джонсона в Хьюстоне. Вы никогда не пробовали украсть 300-килограммовый сейф с территории космического центра? И не пробуйте: слишком тяжелая и опасная работа. А вот воришкам, на след которых полиция вышла на диво быстро, это легко удалось. Тиффани Фоулер и Тэд Робертс, работавшие в здании в период пропажи, были арестованы специальными агентами ФБР и НАСА в одном из ресторанов штата Флорида. Впоследствии в Хьюстоне был взят под стражу и третий подельщик, Шэ Саур, а затем – и четвертый участник преступления, Гордон Мак Вотер, способствовавший транспортировке краденого. Воры намеревались сбыть бесценные свидетельства лунной миссии НАСА по цене $1000-5000 за грамм через сайт минералогического клуба в Антверпене (Голландия). Стоимость украденного, по информации из-за океана, составляла более $1 млн.

Через несколько лет – новое несчастье. В США в районе Вирджиния-Бич из автомобиля неизвестными злоумышленниками были выкрадены две небольших запаянных пластиковых коробки в форме диска с образцами метеоритного и лунного вещества, судя по имевшейся на них маркировке. Образцы такого рода, сообщает Space, передаются НАСА специальным инструкторам «для учебных целей». Прежде чем получить подобные образцы, преподаватели проходят специальный инструктаж, в ходе которого их обучают правильно обращаться с этим национальным достоянием США. А «национальное достояние», оказывается, так просто украсть... Хотя это похоже не на кражу, а на инсценировку кражи в целях избавления от улик: нет грунта – нет «неудобных» вопросов.

На обелиске над могилой нашего великого соотечественника К.Э. Циолковского приведены его ставшие хрестоматийными слова: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а потом завоюет все околосолнечное пространство».

Всю свою жизнь Циолковский мечтал о космическом будущем человечества и пытливым взглядом ученого всматривался в его фантастические горизонты. Он был не одинок. Начало ХХ века для многих было открытием Вселенной, хотя и видимым сквозь призму научных заблуждений того времени и фантазии литераторов. Итальянец Скиапарелли открыл «каналы» на Марсе - и человечество уверилось, что на Марсе существует цивилизация. Берроуз и А. Толстой населили этот воображаемый Марс похожими на людей жителями, и вслед за ними сотни фантастов последовали их примеру.

Земляне просто привыкли к мысли, что жизнь на Марсе есть, и что эта жизнь - разумная. Поэтому призыв Циолковского лететь в космос был встречен пусть не сразу с энтузиазмом, но, во всяком случае, с одобрением. Прошло всего 50 лет после первых выступлений Циолковского, и в стране, которой он посвятил и передал все свои труды, был запущен Первый спутник и в космос полетел Первый космонавт.

Казалось бы, дальше все пойдет по замыслам великого мечтателя. Идеи Циолковского оказались настолько яркими, что самый знаменитый из его последователей - Сергей Павлович Королёв - все свои планы развития космонавтики выстраивал так, чтобы еще в ХХ веке человеческая нога ступила на Марс. Жизнь внесла свои поправки. Сейчас мы не очень-то уверены, что пилотируемая экспедиция к Марсу состоится хотя бы до конца XXI века.

Наверное, дело не только в технических трудностях и роковых обстоятельствах. Любые трудности можно одолеть мудростью и пытливостью человеческого ума, если перед ним поставлена достойная задача. А такой задачи нет! Есть доставшееся в наследство желание - долететь до Марса, но нет ясного понимания - зачем? Если заглянуть глубже, этот вопрос стоит перед всей нашей пилотируемой космонавтикой.

Циолковский видел в космосе неосвоенные просторы для человечества, которому становится тесной родная планета. Эти просторы нужно, разумеется, осваивать, но прежде нужно глубоко изучить их свойства. Полувековой опыт изучения космоса показывает, что очень, очень многое можно исследовать автоматическими аппаратами, не рискуя самой высокой ценностью мироздания - человеческими жизнями. Полвека назад эта идея еще была темой споров и обсуждений, но сейчас, когда мощь компьютеров и возможности роботов приближаются к человеческим пределам, этим сомнениям уже не место. За последние сорок лет автоматические аппараты успешно исследуют Луну, Венеру, Марс, Юпитер, Сатурн, спутники планет, астероиды и кометы, а американские «Вояджеры» и «Пионеры» уже достигли границ Солнечной системы. Хотя в планах космических агентств и проходят порой сообщения о подготовке пилотируемых миссий в дальний космос, пока не прозвучало в них ни одной научной задачи, для решения которой работа космонавтов совершенно необходима. Так что изучение Солнечной системы можно продолжать автоматами еще долго.

Давайте вернемся, все-таки, к проблеме освоения космоса. Когда наше знание о свойствах космических просторов позволит нам начать обживать их, и когда мы сможем для самих себя ответить на вопрос - зачем?

Оставим пока вопрос о том, что в космосе много энергии, в которой нуждается человечество, и много минеральных ресурсов, которые в космосе, возможно, будет добывать дешевле, чем на Земле. И то, и другое, есть пока на нашей планете, и не они являются главной ценностью космоса. Главное в космосе - это то, чего нам крайне трудно обеспечить на Земле - устойчивость условий обитания, и, в конечном счете, устойчивость развития человеческой цивилизации.

Жизнь на Земле постоянно подвергается рискам стихийных бедствий. Засухи, наводнения, ураганы, землетрясения, цунами и иные неприятности не только наносят прямой ущерб нашей экономике и благополучию населения, но требуют сил и затрат на восстановление потерянного. В космосе мы надеемся на избавление от этих привычных угроз. Если мы найдем такие иные земли, где природные стихийные бедствия оставят нас, то это и будет та «земля обетованная», которая станет достойным новым домом для человечества. Логика развития земной цивилизации с неизбежностью приводит к мысли, что в будущем, и возможно не столь далеком, человек будет вынужден искать вне планеты Земля среду обитания, которая могла бы вместить большую часть населения и обеспечить продолжение его жизни в стабильных и комфортных условиях.

Именно это имел в виду К.Э. Циолковский, когда говорил, что человечество не останется вечно в колыбели. Его пытливая мысль нарисовала нам привлекательные картины жизни в «эфирных поселениях», то есть в больших космических станциях с искусственным климатом. Первые шаги в этом направлении уже сделаны: на постоянно обитаемых космических станциях мы научились поддерживать почти привычные условия жизни. Правда, неприятным фактором этих космических станций остается невесомость, - непривычное и губительное для земных организмов состояние.

Циолковский догадывался, что невесомость может быть нежелательной, и предложил создавать в эфирных поселениях искусственную тяжесть осевым вращением станций. Во множестве проектов «космических городов» эта идея была подхвачена. Если вы посмотрите на иллюстрации к теме «космические поселения» в Интернете, то увидите разнообразные торы и колеса со спицами, застекленные со всех сторон как земные оранжереи.

Можно понять Циолковского, во времена которого была попросту неизвестна космическая радиация, предлагавшего создавать открытые солнечному свету космические оранжереи. На Земле мы защищены от радиации мощным магнитным полем родной планеты и достаточно плотной атмосферой. Магнитное поле практически непробиваемо для заряженных частиц, выбрасываемых Солнцем, - оно отбрасывает их в сторону от Земли, позволяя лишь небольшому количеству достигать атмосферы вблизи магнитных полюсов и вызывать красочные полярные сияния.

Сегодняшние обитаемые космические станции расположены на орбитах, находящихся внутри радиационных поясов (по сути - магнитных ловушек), и это позволяет космонавтам годами находиться на станции, не получая опасных доз излучения.

Там, где от радиации уже не защищает земное магнитное поле Земли, радиационная защита должна быть намного серьёзнее. Главным препятствием для радиации является любое вещество, в котором оно поглощается. Если считать, что поглощение космической радиации в земной атмосфере снижает ее уровень до безопасных значений, то в открытом космосе нужно ограждать обитаемые помещения слоем вещества такой же массы, то есть каждый квадратный сантиметр площади помещений должен быть укрыт килограммом вещества. Если принять плотность укрывающего вещества равной 2.5 г/см3 (каменные породы), то геометрическая толщина защиты должна быть не меньше 4 метров. Стекло - тоже силикатное вещество, поэтому для защиты оранжерей в открытом космосе потребуются стекла 4-метровой толщины!

К сожалению, не только космическая радиация заставляет отказаться от заманчивых проектов. Внутри помещений нужно будет создавать искусственную атмосферу с привычной плотностью воздуха, то есть с давлением в 1 кг/см2. Когда помещения имеют небольшой размер, прочность строительных конструкций космических аппаратов позволяет выдержать такое давление. Но огромные поселения с диаметром обитаемых помещений в десятки метров, способных выдерживать такое давление, технически построить будет сложно, а то и невозможно. Создание искусственной тяжести вращением тоже заметно увеличит нагрузку на конструкцию станции.

К тому же движение всякого тела внутри вращающегося «бублика» будет сопровождаться действием кориолисовой силы, создавая большие неудобства (вспомните детские ощущения на дворовой карусели)! Ну и наконец, большие помещения окажутся очень уязвимыми для метеоритных ударов: достаточно разбить одно стекло в большой оранжерее, чтобы из нее вышел весь воздух, и находящиеся в ней организмы погибли бы.

Словом, «эфирные поселения» при внимательном рассмотрении оказываются невыполнимыми мечтаниями.

Может быть, не зря надежды человечества связывались с Марсом? Это достаточно крупная планета с вполне подходящей силой тяжести, у Марса есть атмосфера, и даже сезонные изменения погоды. Увы! Это - только внешнее сходство. Средняя температура на поверхности Марса держится на уровне -50°С, зимой там так холодно, что замерзает даже углекислый газ, а летом тепла недостаточно, чтобы мог растаять водяной лёд.

Плотность марсианской атмосферы - такая же, как земной на высоте 30 км, где даже самолеты не могут летать. Понятно, конечно же, что Марс никоим образом не защищен от космической радиации. В довершение всего, на Марсе очень слабые почвы: это или песок, который даже ветры разреженного марсианского воздуха вздымают в обширные бури, или тот же песок, смерзшийся со льдом в крепкую на вид породу. Только на такой породе ничего нельзя построить, да и подземные помещения не будут выходом без надежного их укрепления. Если в помещениях будет тепло (а люди не собираются жить в ледяных дворцах!), то мерзлота растает, и тоннели обрушатся.

Множество «проектов» марсианской застройки предполагает размещение на поверхности Марса готовых жилых модулей. Это очень наивные идеи. Для защиты от космической радиации каждое помещение нужно укрыть четырехметровым слоем защитных перекрытий. Проще говоря, укрыть все постройки толстым слоем марсианского грунта, и тогда в них можно будет жить. Но ради чего стоит обживать Марс? Ведь на Марсе нет той желанной стабильности условий, которой нам уже не хватает на Земле!

Марс все еще волнует людей, хотя уже никто не надеется найти на нем прекрасных Аэлит или хотя бы собратьев по разуму. На Марсе мы в первую очередь ищем следы внеземной жизни, чтобы понять, как и в каких формах возникает жизнь во Вселенной. Но это - исследовательская задача, и для ее решения вовсе не обязательно жить на Марсе. А для строительства космических поселений Марс - совсем не подходящее место.

Может быть, стоит обратить внимание на многочисленные астероиды? Судя по всему, условия на них очень стабильные. После Великой метеоритной бомбардировки, которая три с половиной миллиарда лет назад превратила поверхности астероидов в поля больших и малых воронок от метеоритных ударов, с астероидами ничего не происходит. В недрах астероидов можно построить обитаемые туннели, и каждый астероид превратить в космический город. Достаточно крупных для этого астероидов в нашей Солнечной системе немного - около тысячи. Так что они не решат проблему создания обширных обитаемых территорий вне Земли. При этом все они будут иметь болезненный недостаток: в астероидах очень малая сила тяжести. Безусловно, астероиды станут для человечества источниками минерального сырья, но для строительства полноценного жилья они совершенно непригодны.

Так неужели бесконечные космические просторы для людей все равно, что безбрежный океан без клочка суши? Неужели все наши мечтания о чудесах космоса - только сладкие грёзы?

Но нет, есть в космосе место, где сказки можно сделать былью, и, можно сказать, оно совсем по соседству. Это - Луна.

Из всех тел Солнечной системы Луна имеет наибольшее число достоинств с точки зрения человечества, ищущего стабильности в космосе. Луна достаточно велика, чтобы иметь заметную силу тяжести на ее поверхности. Основные породы Луны - прочные базальты, простирающиеся на глубину в сотни километров под поверхностью. На Луне нет вулканизма, землетрясений и климатических нестабильностей, так как у Луны нет ни расплавленной мантии в недрах, ни воздушных, ни водных океанов. Луна - ближайшее к Земле космическое тело, благодаря чему колониям на Луне будет легче оказать экстренную помощь и снизить транспортные издержки. Луна все время повернута к Земле одной стороной, и это обстоятельство может оказаться очень полезным во многих отношениях.

Итак, первое достоинство Луны - ее стабильность. Известно, что на освещенной солнцем поверхности температура поднимается до +120°С, а ночью опускается до -160°С, но при этом уже на глубине 2 метра перепады температуры становятся незаметными. В недрах Луны температура очень стабильная. Поскольку базальты имеют низкую теплопроводность (на Земле базальтовую вату используют как очень эффективную теплоизоляцию), в подземных помещениях можно поддерживать любую комфортную температуру. Базальт - газонепроницаемый материал, и внутри базальтовых сооружений можно создать искусственную атмосферу любого состава и поддерживать ее без особых усилий.

Базальт - очень прочная порода. На Земле есть базальтовые скалы высотой 2 километра, а на Луне, где сила тяжести в 6 раз меньше, чем на Земле, базальтовые стены выдержали бы свой вес даже при высоте 12 километров! Следовательно, в базальтовых недрах можно строить залы с высотой потолков в сотни метров, и не применять при этом дополнительных креплений. Поэтому в лунных недрах можно построить тысячи этажей построек самого разного назначения, не используя иных материалов, кроме самого лунного базальта. Если вспомнить, что площадь лунной поверхности только в 13.5 раз меньше площади поверхности Земли, то легко подсчитать, что площадь подземных построек на Луне может быть в десятки раз больше всей территории, которую занимают на нашей родной планете все формы жизни от глубин океанов до вершин гор! И всем этим помещениям не будут угрожать никакие стихийные бедствия миллиарды лет! Перспективно!

Нужно, конечно, сразу задуматься: а куда девать добытый из туннелей грунт? Вырастить на поверхности Луны терриконы километровой высоты?

Оказывается, и тут можно предложить интересное решение. На Луне нет атмосферы, а лунный день длится полмесяца, поэтому две недели в любом месте Луны непрерывно светит жаркое солнце. Если большим вогнутым зеркалом сфокусировать его лучи, то в получившемся пятне света температура будет почти такой же, как на поверхности Солнца - почти 5000 градусов. При такой температуре плавятся почти все известные материалы, в том числе и базальты (они плавятся при 1100°С). Если в это горячее пятно медленно насыпать базальтовую крошку, то она будет плавиться, и из нее можно наплавлять слой за слоем стены, лестничные пролеты и перекрытия. Можно создать строительный робот, который будет это делать по заложенной в него программе совсем без участия человека. Если такой робот запустить на Луну сегодня, то к тому дню, когда на неё прибудет пилотируемая экспедиция, космонавтов уже будут ждать если не дворцы, то уж во всяком случае, комфортабельное жильё и лаборатории.

Простое строительство помещений на Луне не должно быть самоцелью. Эти помещения будут нужны для жизни людей в комфортных условиях, для размещения сельскохозяйственных и промышленных предприятий, для создания зон отдыха, транспортных магистралей, школ и музеев. Только сначала нужно получить все гарантии, что переселившиеся на Луну люди и другие живые организмы не начнут деградировать из-за не совсем привычных условий. В первую очередь нужно исследовать, как длительное воздействие пониженной тяжести будет сказываться на организмах разнообразной земной природы. Эти исследования будут масштабными; едва ли опыты в пробирках смогут гарантировать биологическую устойчивость организмов на протяжении многих поколений. Нужно строить большие оранжереи и вольеры, и в них вести наблюдения и опыты. С этим не справятся никакие роботы, - только сами ученые-исследователи смогут заметить и проанализировать наследственные изменения в живых тканях и живых организмах.

Подготовка к созданию полноценных самообеспечиваемых колоний на Луне - вот та целевая задача, которая должна стать маяком для движения человечества к магистрали его устойчивого развития.

Сегодня многое в техническом построении обитаемых поселений в космосе не имеет ясного понимания. Энергетическое обеспечение в условиях космоса достаточно просто может быть обеспечено солнечными станциями. Один квадратный километр солнечных батарей даже при коэффициенте полезного действия всего 10% будет обеспечивать мощность 150 МВт, правда только в течение лунного дня, т. е. средняя генерация энергии будет вдвое меньшей. Кажется, что это немного. Однако согласно прогнозам на 2020 год мирового потребления электроэнергии (3,5 ТВт) и численности населения Земли (7 млрд человек) среднему землянину достается 0,5 киловатта электрической мощности. Если же исходить из привычного для городского жителя среднесуточного энергообеспечения, скажем 1,5 кВт на человека, то такая солнечная электростанция на Луне сможет удовлетворить потребности 50 тысяч человек - вполне достаточно для небольшой лунной колонии.

На Земле мы значительную часть электроэнергии расходуем на освещение. На Луне многие традиционные схемы будут радикально изменены, в частности, схемы освещения. Подземные помещения на Луне должны освещаться на хорошем уровне, особенно оранжерейное хозяйство. Нет никакого смысла на поверхности Луны производить электроэнергию, передавать ее в подземные постройки, а там снова преобразовывать электроэнергию в свет. Намного эффективнее на поверхности Луны установить концентраторы солнечного света и освещать от них световолоконные кабели. Уровень сегодняшней технологии изготовления световодов позволяет передавать свет почти без потерь на тысячи километров, поэтому не должно составить больших трудностей из освещенных областей Луны передать свет по системе световодов в любое подземное помещение, переключая концентраторы и световоды вслед за движеним солнца по лунному небосводу.

На первых этапах строительства лунной колонии Земля может быть донором необходимых для обустройства поселений ресурсов. Но многие ресурсы в космосе будет добывать легче, чем доставлять с Земли. Лунные базальты наполовину состоят из окислов металлов - железа, титана, магния, алюминия и т. д. В процессе извлечения металлов из добываемых в шахтах и штольнях базальтов будут получаться кислород для разнообразных нужд и кремний для световодов. В открытом космосе можно перехватывать кометы, содержащие до 80% водяного льда, и обеспечить снабжение поселений водой из этих обильных источников (ежегодно мимо Земли не далее 1.5 млн. км от нее пролетает до 40000 миникомет размером от 3 до 30 метров).

Мы уверены, что на ближайшие три-пять десятилетий исследования в области создания поселений на Луне станут доминантой перспективных разработок человечества. Если станет ясно, что на Луне могут быть созданы комфортные условия для жизни людей, то колонизация Луны несколько веков будет путем земной цивилизации к обеспечению ее устойчивого развития. Во всяком случае, никаких других более подходящих для этого тел в Солнечной системе нет.

Может быть, ничего этого не случится по совершенно иной причине. Освоение космоса - это не просто его исследование. Для освоения космоса требуется создание эффективных транспортных магистралей между Землей и Луной. Если такая магистраль не появится, то у космонавтики не окажется будущего, а человечество будет обречено оставаться в границах родной планеты. Ракетная техника, которая позволяет выводить в космос научное оборудование, является дорогостоящей технологией, а каждый пуск ракеты - еще и громадной нагрузкой на экологию нашей планеты. Нам потребуется дешевая и безопасная технология для вывода в космос полезной нагрузки.

В этом смысле Луна представляет для нас исключительный интерес. Поскольку она всегда обращена к Земле одной стороной, из середины обращенного к Земле полушария можно протянуть к нашей планете трос космического лифта. Пусть вас не пугает его длина - 360 тысяч километров. При толщине троса, выдерживающего 5-тонную кабину, общая его масса составит около тысячи тонн, - он весь уместится в нескольких карьерных самосвалах БелАЗ.

Материал для троса нужной прочности уже изобретен, - это углеродные нанотрубки. Нужно только научиться делать его бездефектным по всей длине волокна. Конечно же, космический лифт должен двигаться намного быстрее своих земных аналогов, и даже намного быстрее скоростных поездов и самолетов. Для этого трос лунного лифта нужно покрыть слоем сверхпроводника, и тогда кабина лифта сможет перемещаться вдоль него, не касаясь самого троса. Ничто тогда уже не помешает кабине двигаться с любой скоростью. Можно будет половину пути ускорять кабину, и половину пути - тормозить ее. Если при этом применять привычное на Земле ускорение «1 g», то весь путь от Земли до Луны займет всего 3.5 часа, а кабина сможет делать три рейса в сутки. Физики-теоретики утверждают, что сверхпроводимость при комнатной температуре не запрещена законами природы, и над ее созданием работают многие институты и лаборатории мира. Мы можем показаться кому-то оптимистами, но на наш взгляд, лунный лифт может стать реальностью уже через полвека.

Мы здесь рассмотрели только несколько сторон огромной проблемы колонизации космоса. Анализ обстановки в Солнечной системе показывает, что единственным приемлемым в ближайшие столетия объектом колонизации может стать только Луна.

Хотя Луна и ближе к Земле, чем любые другие тела в космосе, для ее колонизации обязательно нужно иметь средства ее достижения. Если их не будет, то Луна останется такой же недостижимой, как большая земля для Робинзона, застрявшего на маленьком острове. Если бы человечество имело в своем распоряжении много времени и достаточно ресурсов, то можно не сомневаться, что оно преодолело бы любые трудности. Но есть тревожные признаки иного развития событий.

Масштабные климатические изменения, на наших глазах меняющие условия жизни людей на всей планете, могут в очень недалеком будущем заставить нас все свои силы и ресурсы направить на элементарное выживание в новых условиях. Если поднимется уровень мирового океана, то придется заниматься переносом городов и сельскохозяйственных угодий в неосвоенные и непригодные для ведения сельского хозяйства территории. Если климатические изменения приведут к глобальному похолоданию, то придется решать проблему не только обогрева жилья, но и замерзающих полей и пастбищ. Все эти проблемы могут отнять у человечества все силы, и тогда на освоение космоса их может попросту не хватить. А человечество останется жить на родной планете как на родном, но единственном обитаемом острове в безбрежном океане космоса.

А.В. Багров, В.А. Леонов, А.В. Павлов