Нагрузки и воздействия на здание и его конструктивные элементы. Нагрузки и воздействия на здания Нагрузки и воздействия на стены здания

В процессе строительства и во время эксплуатации здание испытывает на себе действие различных нагрузок. Этим силам сопротивляется сам материал конструкции, в нем возникают внутренние напряжения. Поведение строительных материалов и конструкций под воздействием внешних сил и нагрузок изучает строительная механика.

Одни из этих сил действуют на здание непрерывно и называются постоянными нагрузками, другие - лишь в отдельные отрезки времени и называются временными нагрузками.

К постоянным нагрузкам относится собственный вес здания , который в основном состоит из веса конструктивных элементов, составляющих его несущий остов. Собственный вес действует постоянно во времени и по направлению сверху вниз. Естественно, что напряжения в материале несущих конструкций в нижней части здания будут всегда больше, чем в верхней. В конечном счете все воздействие собственного веса передается на фундамент, а через него - на грунт основания. Собственный вес всегда был не только постоянной, но и главной, основной нагрузкой на здание.

Лишь в последние годы строители и конструкторы столкнулись с совершенно новой проблемой: не как надежно опереть здание на грунт, а как его «привязать», заанкерить к земле, чтобы его не оторвали от земли другие воздействия, в основном ветровые усилия. Это произошло потому, что собственный вес конструкций в результате применения новых высокопрочных материалов и новых конструктивных схем все время уменьшался, а габариты зданий росли. Увеличивалась площадь, на которую действует ветер, иначе говоря, парусность здания. И, наконец, воздействие ветра стало более «весомым», чем воздействие веса здания, и здание стало стремиться к отрыву от земли.

является одной из основных временных нагрузок. С увеличением высоты воздействие ветра возрастает. Так, в средней части России нагрузка от ветра (скоростной напор ветра) на высоте до 10 м принимается равным 270 Па, а на высоте 100 м она уже равна 570 Па. В горных районах, на морских побережьях воздействие ветра намного возрастает. Например, в некоторых районах береговой полосы Арктики и Приморья нормативное значение ветрового напора на высоте до 10 м равно 1 кПа. С подветренной стороны здания возникает разряженное пространство, которое создает отрицательное давление - отсос, который увеличивает общее воздействие ветра. Ветер меняет как направление, так и скорость. Сильные порывы ветра создают, кроме того, и ударное, динамическое воздействие на здание, что еще более усложняет условия для работы конструкции.

С большими неожиданностями столкнулись градостроители, когда стали возводить в городах здания повышенной этажности. Оказалось, что улица, на которой никогда не дули сильные ветры, с возведением на ней многоэтажных зданий стала очень ветреной. С точки зрения пешехода, ветер со скоростью 5 м/с уже становится надоедливым: он развевает одежду, портит прическу. Если скорость немного выше - ветер уже поднимает пыль, кружит обрывки бумаг, становится неприятным. Высокое здание является основательной преградой для движения воздуха. Ударяясь об эту преграду, ветер разбивается на несколько потоков. Одни из них огибают здание, другие устремляются вниз, а затем у земли также направляются к углам здания, где и наблюдаются самые сильные потоки воздуха, в 2-3 раза превышающие по своей скорости ветер, который дул бы на этом месте, если бы не было здания. При очень высоких зданиях сила ветра у основания здания может достигать таких размеров, что валит пешеходов с ног.

Амплитуда колебаний высотных зданий достигает больших размеров, что отрицательно влияет на самочувствие людей. Скрип, а иногда и скрежет стального каркаса одного из самых высоких в мире здания Международного торгового центра в Нью-Йорке (высота его 400 м) вызывает тревожное состояние у находящихся в здании людей. Предусмотреть, рассчитать заранее действие ветра при высотном строительстве очень сложно. В настоящее время строители прибегают к экспериментам в аэродинамической трубе. Как и авиастроители! они обдувают в ней модели будущих зданий и в какой-то мере получают реальную картину воздушных токов и их силу.

также относится к временным нагрузкам. Особенно внимательно надо подходить к влиянию снеговой нагрузки на разновысотные здания. На границе между повышенной и пониженной частями здания возникает так называемый «снеговой мешок», где ветер собирает целые сугробы. При переменной температуре, когда происходит поочередное подтаивание и вновь замерзание снега и при этом еще сюда попадают взвешенные частицы из воздуха (пыль, копоть), снеговые, точнее, ледяные массивы становятся особенно тяжелыми и опасными. Снеговой покров из-за ветра ложится неравномерно как при плоских, так и при скатных кровлях, создавая асимметрическую нагрузку, которая вызывает дополнительные напряжения в конструкциях.

К временным относится (нагрузка от людей, которые будут находиться в здании, технологического оборудования, складируемых материалов и т. д.).

Возникают в здании напряжения и от воздействия солнечного тепла и мороза. Это воздействие называется температурно-климатическим . Нагреваясь солнечными лучами, строительные конструкции увеличивают свой объем и размеры. Охлаждаясь во время морозов, они уменьшаются в своем объеме. При таком «дыхании» здания в его конструкциях возникают напряжения. Если здание имеет большую протяженность, эти напряжения могут достичь высоких значений, превышающих допустимые, и здание начнет разрушаться.

Аналогичные напряжения в материале конструкции возникают и при неравномерной осадке здания , которая может произойти не только из-за разной несущей способности основания, но и из-за большой разницы в полезной нагрузке или собственного веса отдельных частей здания. Например, здание имеет многоэтажную и одноэтажную части. В многоэтажной части на перекрытиях расположено тяжелое оборудование. Давление на грунт от фундаментов многоэтажной части будет намного больше, чем от фундаментов одноэтажной, что может вызвать неравномерность осадки здания. Чтобы снять дополнительные напряжения от осадочных и температурных воздействий, здание «разрезают» на отдельные отсеки деформационными швами.

Если здание защищают от температурных деформаций, то шов называется температурным. Он отделяет конструкции одной части здания от другой, за исключением фундаментов, так как фундаменты, находясь в земле, не испытывают температурного воздействия. Таким образом, температурный шов локализует дополнительные напряжения в пределах одного отсека, препятствуя передаче их на соседние отсеки, тем самым препятствуя их сложению и увеличению.

Если здание защищают от осадочных деформаций, то шов называется осадочным. Он отделяет одну часть здания от другой полностью, включая и фундаменты, которые благодаря такому шву имеют возможность перемещаться один по отношению к другому в вертикальной плоскости. При отсутствии швов трещины могли бы возникнуть в неожиданных местах и нарушить прочность здания.

Кроме постоянных и временных существуют еще особые воздействия на здания. К ним относятся:

  • сейсмические нагрузки от землетрясения;
  • взрывные воздействия;
  • нагрузки, возникающие при авариях или поломках технологического оборудования;
  • воздействия от неравномерных деформаций основания при замачивании просадочных грунтов, при оттаивании вечномерзлых грунтов, в районах горных выработок и при карстовых явлениях.

По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равномерно распределенные (собственный вес, снег и др.).

По характеру действия нагрузки могут быть статическими, т. е. постоянными по величине во времени, например тот же собственный вес конструкций, и динамическими (ударными), например порывы ветра или воздействие подвижных частей оборудования (молоты, моторы и др.).

Таким образом, на здание действуют самые различные нагрузки по величине, направлению, характеру действия и месту приложения (рис. 5). Может получиться такое сочетание нагрузок, при котором они все будут действовать в одном направлении, усиливая друг друга.

Рис. 5. Нагрузки и воздействия на здание: 1 - ветер; 2 - солнечная радиация; 3 - осадки (дождь, снег); 4 - атмосферные воздействия (температура, влажность, химические вещества); 5 - полезная нагрузка и собственный вес; 6 - особые воздействия; 7 - вибрация; 8 - влага; 9 - давление грунта; 10 - шум

Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в СНиПе. Следует помнить, что воздействия на конструкции начинаются с момента их изготовления, продолжаются при транспортировке, в процессе возведения здания и его эксплуатации.

Благовещенский Ф.А., Букина Е.Ф. Архитектурные конструкции. - М., 1985.

В процессе строительства и эксплуатации здание испытывает на себе действие различных нагрузок. Внешние воздействия можно разделить на два вида: силовые и несиловые или воздействия среды.

К силовым воздействиям относятся различные виды нагрузок:

постоянные – от собственного веса (массы) элементов здания, давления грунта на его подземные элементы;

временные (длительные) – от веса стационарного оборудования, длительно хранящихся грузов, собственного веса постоянных элементов здания (например, перегородок);

кратковременные – от веса (массы) подвижного оборудования (например, кранов в промышленных зданиях), людей, мебели, снега, от действия ветра;

особые – от сейсмических воздействий, воздействий в результате аварий оборудования и т.п.

К несиловым относятся:

температурные воздействия , вызывающие изменения линейных размеров материалов и конструкций, которое приводит в свою очередь к возникновению силовых воздействий, а также влияющие на тепловой режим помещения;

воздействия атмосферной и грунтовой влаги , а такжепарообразной влаги, содержащейся в атмосфере и в воздухе помещений, вызывающие изменение свойств материалов из которых выполнены конструкции здания;

движения воздуха вызывающее не только нагрузки (при ветре), но и его проникновение внутрь конструкции и помещений, изменение их влажностного и теплового режима;

воздействие лучистой энергии солнца (солнечная радиация) вызывающие в результате местного нагрева изменение физико-технических свойств поверхностных слоев материала, конструкций, изменение светового и теплового режима помещений;

воздействие агрессивных химических примесей , содержащихся в воздухе, которые в присутствии влаги могут привести к разрушению материала конструкций здания (явлении коррозии);

биологические воздействия , вызываемые микроорганизмами или насекомыми, приводящие к разрушению конструкций из органических строительных материалов;

воздействие звуковой энергии (шума) и вибрации от источников внутри или вне здания.

По месту приложения усилий нагрузки разделяются на сосредоточенные (например, вес оборудования) и равномернораспределенные (собственный вес, снег).

По характеру действия нагрузки могут быть статическими , т.е. постоянными по величине во времени и динамическими (ударными).

По направлению – горизонтальные (ветровой напор) и вертикальные (собственный вес).

Т.о. на здание действует самые различные нагрузки по величине, направлению, характеру действия и месту приложения.

Рис. 2.3. Нагрузки и воздействия на здание.

Может получится такое сочетание нагрузок, при котором все они будут действовать в одном направлении, усиливая друг друга. Именно на такие неблагоприятные сочетания нагрузок рассчитывают конструкции здания. Нормативные значения всех усилий, действующих на здание, приведены в ДБН или СНиПе.


Следует помнить, что воздействия на конструкции начинаются с момента их изготовления, продолжаются при транспортировке, в процессе возведения здания и его эксплуатации.

4. Основные требования предъявляемые к зданиям и их элементам.

Здания образуют материально-пространственную среду для осуществления людьми различных социальных процессов быта, труда и отдыха. Поэтому они должны отвечать ряду требований, основные из них:

функциональная (или технологичная ) целесообразность, т.е. здание должно быть удобно для труда, отдыха или другого процесса, для которого оно предназначено;

техническая целесообразность, т.е. здания должны быть прочными, устойчивыми, долговечными, надежно защищать людей и оборудование от вредных атмосферных воздействий, удовлетворять противопожарным требованиям;

архитектурно-художественной выразительности, т.е. оно должно быть привлекательным по своему внешнему виду, благоприятно воздействовать на психологическое состояние и сознание людей;

экономическая целесообразность, предусматривающая при минимальных затратах на постройку и эксплуатацию здания получения максимума полезной площади.

природоохранные .

Основным в здании или помещении является его функциональное назначение.

Осуществление той или иной функции всегда сопровождается осуществлением какой-либо другой функции, имеющей подсобный характер. Например, учебные занятия в аудитории представляют главную функцию этого помещения, движение же людей при заполнении аудитории и после окончания занятий – подсобную. Следовательно, можно различить главные и подсобные функции. Главная функция для конкретного помещения в другом помещении может быть подсобной, и наоборот.

Помещение – основной структурный элемент или часть здания. Соответствие помещения той или другой функции достигается только тогда, когда в нем создаются оптимальные условия для человека, т.е. среда, отвечающая выполняемой им в помещении функции.

Качество среды зависит от ряда факторов. К ним можно отнести:

пространство , необходимое для деятельности человека, размещения оборудования и перемещения людей;

состояние воздушной среды (микроклимат) – запас воздуха для дыхания с оптимальными параметрами температуры, влажности и скорости его движения. Состояние воздушной среды характеризуется также степенью чистоты воздуха, т.е. количеством содержания вредных для человека примесей (газов, пыли);

звуковой режим – условия слышимости в помещении (речи, музыки, сигналов), соответствующие его функциональному назначению, и защита от мешающих звуков (шума), возникающих как в самом помещении, так и проникающие извне, и оказывающих вредное влияние на организм и психику человека;

световой режим– условия работы органов зрения, соответствующие функциональному назначению помещения, определяемые степенью освещенности помещения;

видимость и зрительное восприятие – условия для работы людей, связанные с необходимостью видеть плоские или объемные объекты в помещении.

Техническая целесообразность здания определяется решением его конструкций, которое должно находиться в полном соответствии с законами механики, физики, химии.

В соответствии с воздействием среды к зданию и его конструкциям предъявляется комплекс технических требований.

Прочность – способность здания в целом и отдельных его конструкций воспринимать внешние нагрузки и воздействия без разрушения и существенных остаточных деформаций.

Устойчивость (жесткость) – способность здания сохранять статическое и динамическое равновесие при внешних воздействиях здания зависящая от целесообразного размещения конструкций в соответствии с величиной и направлением нагрузок и от прочности их сопряжений.

Долговечность , означающая прочность, устойчивость и сохранность здания и его элементов во времени. Она зависит от:

ползучести материалов, т.е. от процесса малых непрерывных деформаций, протекающих в материалах в условиях длительного воздействия нагрузок.

морозостойкости материалов, т.е. от способности влажного материала противостоять многократному попеременному замораживанию и оттаиванию;

влагостойкости материалов, т.е. их способности противостоять разрушающему действию влаги (размягчению, набуханию, короблению, расслоению, растрескиванию и т.д.);

коррозиестойкости , т.е. от способности материала сопротивляться разрушению, вызываемому химическими и электрическими процессами;

биостойкости , т.е. от способности органических строительных материалов противостоять действию насекомых и микроорганизмов.

Долговечность определяется предельным сроком службы зданий. Практических инженерных методов расчета долговечности зданий пока не создано, поэтому в строительных нормах и правилах здания по долговечности условно разделяются на три степени :

1-я степень – срок службы более 100 лет;

2-я степень – срок службы от 50 до 100 лет;

3-я степень – срок службы от 20 до 50 лет.

Что такое классы ответственности или категория сложности объекта?
Согласно ДБН В.1.2-14-2009 «Общие принципы обеспечения надежности и конструктивной безопасности зданий, сооружений, строительных конструкций и оснований» и ДБН A.2.2-3:2012 «Состав и содержание проектной документации на строительство», который распространяются на:
- строительные объекты (здания и сооружения) различного назначения.
- составные части объектов, их основы и конструкции из различных материалов.

КЛАССИФИКАЦИЯ СТРОИТЕЛЬНЫХ ОБЪЕКТОВ
Классы последствий (ответственности) зданий и сооружений определяются уровнем возможных материальных убытков и (или) социальных потерь, связанных с прекращением эксплуатации или с потерей целостности объекта.

Возможные социальные потери от отказа должны оцениваться в зависимости от таких факторов риска, как:
- опасность для здоровья и жизни людей;
- резкое ухудшение экологической обстановки в прилегающей к объекту местности (например, при разрушении хранилищ токсичных жидкостей или газов, отказе очистных сооружений канализации и т.п.);
- потеря памятников истории и культуры или других духовных ценностей общества;
- прекращение функционирования систем и сетей связи, энергоснабжения, транспорта или других элементов жизнеобеспечения населения или безопасности общества;
- невозможность организовать предоставление помощи пострадавшим при авариях и стихийных бедствиях;
- угроза обороноспособности страны.

КАТЕГОРИЯ СЛОЖНОСТИ ОБЪЕКТА СТРОИТЕЛЬСТВА
Категория сложности объекта строительства определяют на основании класса последствий (ответственности) в соответствии с таблицей
Возможные экономические убытки должны оцениваться расходами, связанными как с необходимостью восстановления объекта, который отказал, так и косвенный ущерб (убытки от остановки производства, упущенная выгода и т.д.).


Факторы, воздействующие на здания и сооружения делят на:

Внешние воздействия (природные и искусственные: радиация, температура, воздушные потоки, осадки, газы, химические вещества, грозовые разряды, радиоволны, электромагнитные волны, шум, звуковые колебания, биологические вредители, давление грунта, морозное пучение, влага, сейсмические волны, блуждающие токи, вибрации);

Внутренние (технологические и функциональные: нагрузки постоянные и временные, длительные и кратковременные от собственного веса, оборудования и людей; технологические процессы: удары, вибрации, истирания, пролив жидкости; колебания температуры; влажность среды; биологические вредители).

Все эти факторы приводят к ускоренному механическому, физико-химичекому разрушению, в том числе и к коррозии, что приводит к снижению несущей способности отдельных конструкций и всего здания в целом.

Ниже приведена схема влияния внешних и внутренних факторов на здания и сооружения.

При эксплуатации сооружений различают: силовые воздействия нагрузок, агрессивное воздействие окружающей среды.

Агрессивная среда – среда, под влиянием которой изменяется структура свойства материалов, что приводит к снижению прочности.

Изменение структуры и разрушение называется коррозией. Вещество, способствующее разрушению и коррозии – стимулятор. Вещество, затрудняющее разрушение и коррозию – пассиваторы и ингибиторы коррозии.

Разрушение строительных материалов носит различный характер и зависит от взаимодействия химической, электрохимической, физической, физико-химической среды.

Агрессивные среды делятся на газовые, жидкие, твердые.

Газовые среды: это такие соединения как сероуглерод, углекислый, сернистый газ. Агрессивность данной среды характеризуется концентрацией газов, растворимостью в воде, влажностью и температурой.

Жидкие среды: это растворы кислот, щелочей, солей, масло, нефть, растворители. Коррозионные процессы в жидких средах протекают более интенсивно, чем в других.

Твердые среды: это пыль, грунты. Агрессивность данной среды оценивается дисперсностью, растворимостью в воде, гигроскопичностью, влажностью окружающей среды.

Характеристика агрессивной среды:

Сильно агрессивные – кислоты, щелочи, газы – агрессивные газы и жидкости в производственных помещениях;

Средне агрессивные – атмосферный воздух и вода с примесями – воздух с повышенной влажностью (более 75%);

Слабо агрессивные – чистый атмосферный воздух – незагрязненная вредными примесями вода;

Неагрессивные – чистый, сухой (влажностью до 50%) и теплый воздух – атмосферный воздух в сухих и теплых климатических районах.

Воздействие воздушной среды: в атмосфере содержится пыль, грязь, разрушающие здания и сооружения. Загрязнение воздуха в сочетании с влагой приводит к преждевременному износу, растрескиванию и разрушению строительной конструкции.

Вместе с тем в чистой и сухой атмосфере бетон и другие материалы могут сохраняться сотни лет. Наибольшими интенсивными загрязнителями воздуха являются продукты сгорания различных топлив, поэтому в городах, промышленных центрах металлические конструкции коррозируют в 2-4 раза быстрее, чем в сельской местности, где меньше сжигается угля и топлива.

К основным продуктам сгорания большинства видов топлива относятся CO 2 , SO 2 .

При растворении СО 2 в воде образуется углекислота. Это конечный продукт сгорания. Она разрушающе воздействует на бетон и другие строительные материалы. При растворении SO 2 в воде образуется серная кислота.

В дымах накапливается более 100 видов вредных соединений (HNO 3 , H 3 PO 4 , смолистые вещества, несгорающие частицы топлива). В приморских районах в атмосфере находится хлориды, соли серной кислоты, что при влажном воздухе увеличивает агрессивность воздействия на металлические конструкции.

Воздействие грунтовых вод: грунтовые воды представляют собой раствор с изменяющейся концентрацией и химическим составом, что отражается на степени агрессивности его воздействия. Вода в грунте постоянно воздействует с минералами и органическими веществами. Устойчивое обводнение подземных частей здания при перемещении грунтовых вод усиливает коррозию конструкции и выщелачивание извести в бетоне, снижает прочность основания.

Выделяют общекислотную, выщелачивающую, сульфатную, магнезиальную, углекислотную агрессивность грунтовых вод.

Наиболее существенное воздействие оказывают следующие факторы:

· Воздействие влаги: как показал опыт эксплуатации зданий, наибольшее влияние на износ конструкций оказывает влага. Поскольку фундаменты и стены старых реконструированных зданий выполнены в основном из разнородных каменных материалов (известняк, красный кирпич, известковые и цементные растворы) с пористо-капиллярной структурой, при контакте с водой они интенсивно увлажняются, зачастую изменяют свои свойства и в экстремальных случаях разрушаются.

Основным источником увлажнения стен и фундаментов является капиллярный подсос, который приводит к повреждениям конструкций в процессе эксплуатации: разрушению материалов в результате промерзания; образованию трещин из-за набухания и усадки; потере теплоизоляционных свойств; разрушению конструкций под воздействием агрессивных химических веществ, растворенных в воде; развитию микроорганизмов, вызывающих биологическую коррозию материалов.

Процесс санации зданий и сооружений не может быть ограничен обработкой их биоцидным препаратом. Должна быть реализована комплексная программа мероприятий, состоящая из нескольких стадий, а именно:

Диагностика (анализ тепловлажностного режима, ренгеноскопический и биологический анализ продуктов коррозии);

Сушка (при необходимости) помещений, если речь идет о подземных сооружениях, например, подвалах;

Устройство отсечной горизонтальной гидроизоляции (при наличии подсоса почвенной влаги);

Очистка, при необходимости, внутренних поверхностей от высолов и продуктов биологической коррозии;

Лечащая обработка противосолевыми и биоцидными препаратами;

Заделка трещин и протечек специальными гидропломбирующими составами и последующая обработка поверхностей защитными гидроизолирующими препаратами;

Производство отделочных работ.

· Воздействие атмосферных осадков: атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживающуюся в виде молекул на частицах грунта молекулярными илами, либо в пленочную, поверх молекулярной, либо в гравитационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грунтовой воды и, сливаясь с ней, повышать ее уровень. Грунтовая вода, в свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и обводняет верхние слои грунта. В некоторых условиях капиллярная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.

· Воздействие отрицательной температуры: некоторые конструкции, например, цокольные части, находятся в зоне переменного увлажнения и периодического замораживания. Отрицательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлажнения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания. При замерзании воды в порах материала объем ее увеличивается, что создает внутренние напряжения, которые все возрастают вследствие сжатия массы самого материала под влиянием охлаждения. Давление льда в замкнутых порах весьма велико – до 20 Па. Разрушение конструкций в результате замораживания происходит только при полном (критическом) влагосодержании, насыщении материала. Вода начинает замерзать у поверхности конструкций, а поэтому разрушение их под воздействием отрицательной температуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре – 22С о, когда вся вода превращается в лед. Интенсивность замерзания зависит от объема пор. Камни и бетоны с пористостью до 15% выдерживают 100-300 циклов замораживания. Уменьшение пористости, а следовательно, и количество влаги повышает морозостойкость конструкций. Из сказанного следует, что при замерзании разрушаются те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах – это прежде всего защитить их от увлажнения. Промерзание грунтов в основаниях опасно для зданий, построенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связанном виде. Повреждения зданий из-за промерзания и выпучивания оснований могут произойти после многих лет и эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промерзанию.

· Возведение технологических процессов: каждое здание и сооружение проектируется и строится с учетом взаимодействия предусматриваемых в нем процессов; однако из-за неодинаковой стойкости и долговечности материалов конструкций и различного влияния на них среды износ их неравномерен. В первую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжатые элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибаемые и растянутые, тонкостенные, которые работают при динамической нагрузке, в условиях высокой влажности и высокой температуры. Износ конструкций под действием истирания – абразивный износ полов, стен, углов колонн, ступеней лестниц и других конструкций бывает весьма интенсивным и поэтому сильно влияющим на их долговечность. Он происходит под действием, как природных сил (ветров, песчаных бурь), так и вследствие технологических и функциональных процессов, например из-за интенсивного перемещения больших людских потоков в зданиях общественного назначения.

Описание объекта

Таблица 1.1

Общая характеристика Насосная станция
Год постройки
Общая площадь, м 2 -площадь застройки, м 2 -площадь помещений, м 2
Высота здания, м 3,9
Строительный объем, м 3 588,6
Этажность
Строительные характеристики
Фундаменты Монолитный железобетон
Стены Кирпичные
Перекрытия Железобетонные
Кровля Кровля из рулонных материалов
Полы Цементные
Дверные проемы Деревянные
Внутренняя отделка Штукатурка
Привлекательность (внешний вид) Удовлетворительный внешний вид
Фактический возраст здания
Нормативный срок службы здания
Остаточный срок эксплуатации
Системы инженерного обеспечения
Теплоснабжение Центральное
Горячее водоснабжение Центральное
Канализация Центральная
Питьевое водоснабжение Центральное
Электроснабжение Центральное
Телефон -
Радио -
Сигнализация: -охранная -пожарная наличие наличие
Внешнее благоустройство
Озеленение Зеленые насаждения: газон, кустарники
Подъездные пути Асфальтированная дорога, удовлетворительное состояние

А.Е.Сутягин 2017г

Здания (жилище) - часть культуры человека. Искусственный артефакт. Появляются вместе с человеком. Элемент очеловечивания природы.
Предназначение здания, как такового - защищать человека, человеческий организм, его здоровье от влияния природы, от влияния внешних природных) факторов. А также создавать пригодную среду обитания невзирая на внешние климатические воздействия.

Любое здание состоит, прежде всего, из конструкций, выполненных из того или иного материала. а также из различного рода инженерных систем предназначенных для комфортной среды и удовлетворении основных физиологических потребностей людей.

Определение понятий - здание и сооружение.
Здание - предназначено для постоянного пребывания людей.
Сооружение - не предназначено для постоянного пребывания людей. Необходимо для осуществления специфических технологических задач.

Составные части здания (конструкции).
Фундамент - передача нагрузки от всего здания на естественное основание (грунт). (“Корень здания”).
Стены - защита от ветровых и тепловых воздействий.
Каркас - скелет здания.
Перекрытия - восприятие нагрузки, от находящихся в здании людей, мебели и оборудования.
Кровля - защита здания от атмосферных осадков (снег, дождь), солнечных лучей, тепловых воздействий.

Количество видов и типов частей здания настолько разнообразно и сильно зависит от назначения здания. В рамках данной статьи остановимся на основных моментах.

Конструкции здания подразделяются на несущие и ограждающие конструкции.
Несущие конструкции - воспринимают силовые воздействия от других частей здания и подвижной нагрузки (людей) и передают их на основание (через фундаменты). Параметры несущих конструкций назначаются только на основании специализированных расчетов.
Ограждающие конструкции (ненесущие) - конструкции предназначенные для защиты людей от внешних факторов и обеспечивающие нормальное функционирования здания согласно назначению здания. Например окна и двери.
Ограждающие конструкции первыми воспринимают силовые воздействия и передают их на несущие конструкции. Четкой градации между этими конструкция провести затруднительно. Обычно в зданиях (особенно в прошлом) те или иные конструкции могут сочетать функции несущих и ограждающих конструкций.
Например, кирпичная кладка много веков - это и защита от тепловых воздействий и хороший несущий элемент.
В индустриальных зданиях стараются разделить эти функции. (Например каркас и сендвич-панели).

Здания и сооружения должны сопротивляться (выдерживать) требуемым нормативными документами нагрузкам и воздействиям.

Статья 7 Федерального закона N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" вводит понятие механической безопасности здания или сооружения, а именно:

"Строительные конструкции и основание здания или сооружения должны обладать такой прочностью и устойчивостью, чтобы в процессе строительства и эксплуатации не возникало угрозы причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений в результате:

1) разрушения отдельных несущих строительных конструкций или их частей;

2) разрушения всего здания, сооружения или их части;

3) деформации недопустимой величины строительных конструкций, основания здания или сооружения и геологических массивов прилегающей территории;

4) повреждения части здания или сооружения, сетей инженерно-технического обеспечения или систем инженерно-технического обеспечения в результате деформации, перемещений либо потери устойчивости несущих строительных конструкций, в том числе отклонений от вертикальности."

Нагрузки и воздействия.

Нагрузки - то что непосредственно оказывают силовые воздействия на элемент конструкции. Воздействия - то что вызывает (опосредованно) в конструкциях внутренние усилия или деформации.

Нагрузки от веса несущих и ограждающих конструкций (статические)
. Атмосферные нагрузки (динамические)
.. снеговая
.. дождевая
.. ветровая (квазистатические и динамические)
.. гололедная
.. температурная (воздействие)
.. ледовая
.. волновая (штормовая)
.. магнитная и электромагнитная
и другие.
. Воздействия смещений земной коры
.. сейсмическая (тектоническая)
.. просадочная (в результате замачивания грунтов)
.. влияние горных выработок
.. влияние карстово-суффозионных процессов
.. Аварийные (особые)
.. пожар (обрушение и тепловое воздействие)
.. столкновение с транспортным средством)
.. взрывное
.. обрушение частей здания
.. Нагрузки от редких природных факторов
.. ураганы
.. смерчи
.. цунами
и др.

Полезные нагрузки (для чего собственно и проектируется здание)

Нагрузки от веса людей (“живая” нагрузка) (квазистатическая)
. нагрузки от мебели и бытового оборудования (квазистатическая)
. Технологические нагрузки (производство)
. Вес и динамические воздействия производственного оборудования.
. Крановые нагрузки
. Нагрузки от внутрицехового транспорта
. Нагрузки от лифтов (и тп.).
. Температурные технологические нагрузки
. Повышенное давление (вакуум)
. Технологические нагрузки на сооружения (мосты, кран, дамбы, плотины, аэродромы и т.д.)

По характеру воздействия нагрузки делятся на
. кратковременные (многократно-повторяющиеся или эпизодические)
. длительные
. постоянные

С точки зрения: вызывают ли нагрузки динамические усилия в конструкциях.
. статические
. квазистатические
. динамические (пульсационные, ударные, периодические и т.)

Расчетное и эксплуатационное значение нагрузки. При проектировании несущих конструкции для разных видов расчетов используют несколько значений одной и той же нагрузки. Как минимум Расчетное значение (повышенное) и нормативное значение (эксплуатационное).

Сочетание нагрузок. Каждая нагрузка для расчета элемента здания может и нагружать этот элемент и разгружать этот элемент. Поэтому в расчете используется определенное сочетание нагрузок, а именно такое, которое максимально нагружает рассчитываемый элемент здания.

Надо понимать, что величина нагрузки (как полезной, так и природной) носить случайный ("волатильный") характер. В нормативной документации определяется максимальная величина нагрузки превышение, которой маловероятно (хотя и возможно) в течении всего срока эксплуатации здания (70-150 лет).

Ввиду этого, для сооружений повышенного уровня ответственности (и, соответственно, большего срока эксплуатации) вводится повышающие коэффициенты, на которые умножаются "базовые" значения нагрузок. (коэффициент надежности по ответственности здания от 1,1 до 1,2).

Подробнее о значении тех или иных видов нагрузок см. список прилагаемой литературы.

ЛИТЕРАТУРА

1. Федеральный закон от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений".

2. ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения.

3. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85.

4. Нагрузки и воздействия на здания и сооружения. В.Н.Гордеев, А.И.Лантух-Лященко, В.А. Пашинский, А.В.Перельмутер, С.Ф.Пичугин; под. общей ред. А.В.Перельмутера. 3-е изд., перераб. - М.: Издательство С, 2009г.

Предполагается, что все опорные точки конструкции движутся поступательно по одинаковому закону Х 0 = XJ ()

При землетрясении грунты основания здания приходят в движение, что показано на рисунке 14.

При этом на каждую единицу объема сооружения действует инерционная сила, зависящая от сосредоточенных в этих объемах инерционных параметров - масс и жест- костных характеристик сооружения. Эти инерционные силы называются сейсмическими силами или сейсмическими нагрузками и приводят сооружение в напряженно- деформированное состояние.

Рассмотрим основные подходы, позволяющие определить такие важные параметры, как жесткость, собственную частоту и формы колебаний сооружения. Наиболее просто выбрать в качестве модели здания линейный осциллятор, воздействие на который моделируется горизонтальным перемещением основания по заданному закону X Q = X 0 (t), а система имеет одну степень свободы, определяемую горизонтальным перемещением сосредоточенной массы т (рис. 15).

Таким образом, полное перемещение Х 0 (0 массы т в любой момент времени складывается из «переносного» перемещения Xj(t) и относительного перемещения, вызванного изгибом стержня X 2 (t):

Составим уравнение движения, используя метод перемещений, ибо нас интересует значение восстанавливающей силы (силы упругости), равной


Расчетная схема линейного осциллятора

где -перемещение Х т массы в горизонтальном

направлении, вызванное действием единичной силы - жесткость линейного осциллятора.

Уравнение равновесия массы будет

Тогда с учетом:

где со 2 - частота собственных колебаний осциллятора, получаем уравнение движения, в котором параметром, определяющим колебательную систему, является частота собственных колебаний этой системы:

Сейсмические нагрузки могут действовать в любом направлении, поэтому для реальных зданий и сооружений уравнения, определяющие их движение при сейсмической нагрузке, весьма громоздки, однако при этом система характеризуется все той же частотой собственных колебаний.

Если обобщить задачу сейсмостойкого строительства, то с точки зрения выведенных уравнений она состоит в выявлении тех конструкций, которые являются наименее прочными и жесткими, и соответственно в увеличении их прочности (сейсмоусиление) или снижении нагрузки на них (сейсмоизоляция).

В современных нормативных документах изложены общие требования по обеспечению механической безопасности зданий и сооружений. Так, в ч. 6 ст. 15 Федерального закона № 384 «Технический регламент о безопасности зданий и сооружений» выдвинуты требования о том, что «в процессе строительства и эксплуатации здания или сооружения его строительные конструкции и основание не достигнут предельного состояния по прочности и устойчивости... при вариантах одновременного действия нагрузок и воздействий».

За предельное состояние строительных конструкций и основания по прочности и устойчивости должно быть принято состояние, характеризующееся:

  • разрушением любого характера;
  • потерей устойчивости формы;
  • потерей устойчивости положения;
  • нарушением эксплуатационной пригодности и иными явлениями, связанными с угрозой причинения вреда жизни и здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.

В расчетах строительных конструкций и основания должны быть учтены все виды нагрузок, соответствующих функциональному назначению и конструктивному решению здания или сооружения, климатические, а в необходимых случаях технологические воздействия, а также усилия, вызываемые деформацией строительных конструкций и основания.

Здание или сооружение на территории, на которой возможно проявление опасных природных процессов и явлений и (или) техногенных воздействий, должно быть спроектировано и построено таким образом, чтобы в процессе эксплуатации здания или сооружения опасные природные процессы и явления и (или) техногенные воздействия не вызывали последствий, указанных в ст. 7 Федерального закона № 384 , и (или) иных событий, создающих угрозу причинения вреда жизни или здоровью людей, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни и здоровью животных и растений.

Для элементов строительных конструкций, характеристики которых, учтенные в расчетах прочности и устойчивости здания или сооружения, могут изменяться в процессе эксплуатации под воздействием климатических факторов или агрессивных факторов наружной и внутренней среды, в том числе под воздействием сейсмических процессов, которые могут вызывать усталостные явления в материале строительных конструкций, в проектной документации должны быть дополнительно указаны параметры, характеризующие сопротивление таким воздействиям, или мероприятия по защите от них.

При оценке последствий землетрясения используется классификация зданий, приведенная в сейсмической шкале MMSK - 86 . В соответствии с этой шкалой здания разделяются на две группы:

  • 1) здания и типовые сооружения без антисейсмических мероприятий;
  • 2) здания и типовые сооружения с антисейсмическими мероприятиями.

Здания и типовые сооружения без антисейсмических мероприятий разделяют на типы.

А1 - местные здания. Здания со стенами из местных строительных материалов: глинобитные без каркаса; саманные или из сырцового кирпича без фундамента; выполненные из скатанного или рваного камня на глиняном растворе и без регулярной (из кирпича или камня правильной формы) кладки в углах ит.п.

А2 - местные здания. Здания из самана или сырцового кирпича, с каменными, кирпичными или бетонными фундаментами; выполненные из рваного камня на известковом, цементном или сложном растворе с регулярной кладкой в углах; выполненные из пластового камня на известковом, цементном или сложном растворе; выполненные из кладки типа «мидис»; здания с деревянным каркасом с заполнением из самана или глины, с тяжелыми земляными или глиняными крышами; сплошные массивные ограды из самана или сырцового кирпича и т. п.

Б - местные здания. Здания с деревянными каркасами с заполнителями из самана или глины и легкими перекрытиями:

  • 1) Б1 - типовые здания. Здания из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе; деревянные щитовые дома;
  • 2) Б2 - сооружения из жженого кирпича, тесаного камня или бетонных блоков на известковом, цементном или сложном растворе: сплошные ограды и стенки, трансформаторные киоски, силосные и водонапорные башни.

В - местные здания. Деревянные дома, рубленные в «лапу» или в «обло»:

  • 1) В1 - типовые здания. Железобетонные, каркасные крупнопанельные и армированные крупноблочные дома;
  • 2) В2 - сооружения. Железобетонные сооружения: силосные и водонапорные башни, маяки, подпорные стенки, бассейны и т. п.

Здания и типовые сооружения с антисейсмическими мероприятиями разделяются на типы:

  • 1) С 7 - типовые здания и сооружения всех видов (кирпичные, блочные, панельные, бетонные, деревянные, щитовые и др.) с антисейсмическими мероприятиями для расчетной сейсмичности 7 баллов;
  • 2) С8 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 8 баллов;
  • 3) С9 - типовые здания и сооружения всех видов с антисейсмическими мероприятиями для расчетной сейсмичности 9 баллов.

При сочетании в одном здании двух или трех типов здание в целом следует относить к слабейшему из них.

При землетрясениях принято рассматривать пять степеней разрушения зданий. В международной модифицированной сейсмической шкале MMSK-86 предлагается следующая классификация степеней разрушения зданий:

  • 1) d = 1 - слабые повреждения. Слабые повреждения материала и неконструктивных элементов здания: тонкие трещины в штукатурке; откалывание небольших кусков штукатурки; тонкие трещины в сопряжениях перекрытий со стенами и стенового заполнения с элементами каркаса, между панелями, в разделке печей и дверных коробок; тонкие трещины в перегородках, карнизах, фронтонах, трубах. Видимые повреждения конструктивных элементов отсутствуют. Для ликвидации повреждений достаточно текущего ремонта зданий;
  • 2) d = 2 - умеренные повреждения. Значительные повреждения материала и неконструктивных элементов здания, падение пластов штукатурки, сквозные трещины в перегородках, глубокие трещины в карнизах и фронтонах, выпадение кирпичей из дымовых труб, падение отдельных черепиц. Слабые повреждения несущих конструкций: тонкие трещины в несущих стенах; незначительные деформации и небольшие отколы бетона или раствора в узлах каркаса и стыках панелей. Для ликвидации повреждений необходим капитальный ремонт зданий;
  • 3) d = 3 - тяжелые повреждения. Разрушения неконструктивных элементов здания: обвалы частей перегородок, карнизов, фронтонов, дымовых труб; значительные повреждения несущих конструкций: сквозные трещины в несущих стенах; значительные деформации каркаса; заметные сдвиги панелей; выкрашивание бетона в узлах каркаса. Возможен восстановительный ремонт здания;
  • 4) d = 4 - частичные разрушения несущих конструкций: проломы и вывалы в несущих стенах; развалы стыков и узлов каркаса; нарушение связей между частями здания; обрушение отдельных панелей перекрытия; обрушение крупных частей здания. Здание подлежит сносу;
  • 5) d = 5 - обвалы. Обрушение несущих стен и перекрытия, полное обрушение здания с потерей его формы.

Анализируя последствия землетрясений, можно выделить следующие основные повреждения, которые получили здания различной конструктивной схемы, если сейсмические воздействия превосходили расчетные.

В каркасных зданиях преимущественно разрушаются узлы каркаса вследствие возникновения в этих местах значительных изгибающих моментов и поперечных сил. Особенно сильные повреждение получают основания стоек и узлы соединения ригелей со стойками каркаса (рис. 16а).

В крупнопанельных и крупноблочных зданиях наиболее часто разрушаются стыковые соединения панелей и блоков между собой и с перекрытиями. При этом наблюдается взаимное смещение панелей, раскрытие вертикальных стыков, отклонение панелей от первоначального положения, а в некоторых случаях обрушение панелей (рис. 160).

Для зданий с несущими стенами из местных материалов (сырцовый кирпич, глиносаманные блоки, туфовые блоки и др.) характерны следующие повреждения: появление трещин в стенах (рис. 17); обрушение торцовых стен; сдвиг, а иногда и обрушение перекрытий; обрушение отдельно стоящих стоек и особенно печей и дымовых труб.

Разрушение зданий в полной мере характеризуют законы разрушения. Под законами разрушения здания по-


Разрушение каркасного здания при землетрясении в Китае (а) и разрушение панельных зданий при землетрясении в Румынии (б) нимается зависимость между вероятностью его повреждения и интенсивностью проявления землетрясения в баллах. Законы разрушения зданий получены на основе анализа статистических материалов по разрушению жилых, общественных и промышленных зданий от воздействия землетрясений разной интенсивности.

Характерные повреждения кирпичных простенков при сейсмическом воздействии

Для построения кривой, аппроксимирующей вероятности наступления не менее определенной степени повреждения зданий, используется нормальный закон распределения повреждений. При этом учитывается, что для одного и того же здания может рассматриваться не одна, а пять степеней разрушения, т.е. после разрушения наступает одно из пяти несовместимых событий. Значения математического ожидания М мо интенсивности землетрясения в баллах, вызывающего не менее определенных степеней разрушения зданий, приведены в таблице 1.

Таблица 1

Математические ожидания М мо законов разрушения зданий

Классы зданий по MMSK-86

Степени разрушения зданий

Легкая d = 1

Умеренная d = 2

Частичное разрушение d = 4

Математические ожидания М законов разрушения

Использование данных таблицы 1 позволяет прогнозировать вероятность повреждения зданий различных классов при заданной интенсивности землетрясения.