Способ предотвращения образования накипи нагревательных труб водогрейных и паровых котлов. Предупреждение коррозии оборудования теплоснабжения д) Подшламовая коррозия

  • Глава четвертая Предварительная очистка воды и физико-химические процессы
  • 4.1. Очистка воды методом коагуляции
  • 4.2. Осаждение методами известкования и содоизвесткования
  • Глава пятая Фильтрование воды на механических фильтрах
  • Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
  • Глава шестая Обессоливание воды
  • 6.1. Физико-химические основы ионного обмена
  • 6.2. Ионообменные материалы и их характеристики
  • 6.3. Технология ионного обмена
  • 6.4. Малосточные схемы ионитных водоподготовок
  • 6.5. Автоматизация водоподготовительных установок
  • 6.6. Перспективные технологии водоочистки
  • 6.6.1. Противоточная технология ионирования
  • Назначение и область применения
  • Основные принципиальные схемы впу
  • Глава седьмая Термический метод очистки воды
  • 7.1. Метод дистилляции
  • 7.2. Предотвращение накипеобразования в испарительных установках физическими методами
  • 7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
  • Глава восьмая Очистка высокоминерализованных вод
  • 8.1. Обратный осмос
  • 8.2. Электродиализ
  • Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
  • 9.1. Основные положения
  • Нормы органолептических показателей воды
  • Нормы бактериологических показателей воды
  • Показатели пдк (нормы) химического состава воды
  • 9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
  • 9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
  • 9.4. Декарбонизация воды методом известкования
  • 9.6. Магнитная противонакипная обработка добавочной воды
  • 9.7. Подготовка воды для закрытых тепловых сетей
  • 9.8. Подготовка воды для местных систем горячего водоснабжения
  • 9.9. Подготовка воды для отопительных систем теплоснабжения
  • 9.10. Технология обработки воды комплексонами в системах теплоснабжения
  • Глава десятая Очистка воды от растворенных газов
  • 10.1. Общие положения
  • 10.2. Удаление свободной углекислоты
  • Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
  • 10.3. Удаление кислорода физико-химическими методами
  • 10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
  • 10.5. Химические методы удаления газов из воды
  • Глава одиннадцатая Стабилизационная обработка воды
  • 11.1. Общие положения
  • 11.2. Стабилизация воды подкислением
  • 11.3. Фосфатирование охлаждающей воды
  • 11.4. Рекарбонизация охлаждающей воды
  • Глава двенадцатая
  • Применение окислителей для борьбы
  • С биологическим обрастанием теплообменников
  • И обеззараживания воды
  • Глава тринадцатая Расчет механических и ионообменных фильтров
  • 13.1. Расчет механических фильтров
  • 13.2. Расчет ионитных фильтров
  • Глава четырнадцатая Примеры расчета водоподготовительных установок
  • 14.1. Общие положения
  • 14.2. Расчет установки химического обессоливания с параллельным включением фильтров
  • 14.3. Расчет декарбонизатора с насадкой из колец Рашига
  • 14.4. Расчет фильтров смешанного действия (фсд)
  • 14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
  • Особые условия и рекомендации
  • Расчет н-катионитных фильтров 1-й ступени ()
  • Расчет анионитных фильтров 1-й ступени (а1)
  • Расчет н-катионитных фильтров 2-й ступени ()
  • Расчет анионитных фильтров 2-й ступени (а2)
  • 14.6. Расчет электродиализной установки
  • Глава пятнадцатая краткие технологии очистки конденсатов
  • 15.1. Электромагнитный фильтр (эмф)
  • 15.2. Особенности осветления турбинных и производственных конденсатов
  • Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
  • 16.1. Основные понятия о сточных водах тэс и котельных
  • 16.2. Воды химводоочисток
  • 16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
  • 16.4. Теплые воды
  • 16.5.Воды гидрозолоудаления
  • 16.6. Обмывочные воды
  • 16.7. Нефтезагрязненные воды
  • Часть II. Водно-химический режим
  • Глава вторая Химический контроль – основа водно-химического режима
  • Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
  • 3.1. Основные положения
  • 3.2. Коррозия стали в перегретом паре
  • 3.3. Коррозия тракта питательной воды и конденсатопроводов
  • 3.4. Коррозия элементов парогенераторов
  • 3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
  • 3.4.2. Коррозия пароперегревателей
  • 3.4.3. Стояночная коррозия парогенераторов
  • 3.5. Коррозия паровых турбин
  • 3.6. Коррозия конденсаторов турбин
  • 3.7. Коррозия оборудования подпиточного и сетевого трактов
  • 3.7.1. Коррозия трубопроводов и водогрейных котлов
  • 3.7.2. Коррозия трубок теплообменных аппаратов
  • 3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
  • 3.8. Консервация теплоэнергетического оборудования и теплосетей
  • 3.8.1. Общее положение
  • 3.8.2. Способы консервации барабанных котлов
  • 3.8.3. Способы консервации прямоточных котлов
  • 3.8.4. Способы консервации водогрейных котлов
  • 3.8.5. Способы консервации турбоустановок
  • 3.8.6. Консервация тепловых сетей
  • 3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
  • Водный раствор аммиака nh4(oh)
  • Трилон б
  • Тринатрийфосфат Na3po4·12н2о
  • Едкий натр NaOh
  • Силикат натрия (жидкое стекло натриевое)
  • Гидроксид кальция (известковый раствор) Са(он)2
  • Контактный ингибитор
  • Летучие ингибиторы
  • Глава четвертая отложения в энергетическом оборудовании и способы устранения
  • 4.1. Отложения в парогенераторах и теплообменниках
  • 4.2. Состав, структура и физические свойства отложений
  • 4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
  • 4.3.1. Условия образования твердой фазы из солевых растворов
  • 4.3.2. Условия образования щелочно-земельных накипей
  • 4.3.3. Условия образования ферро - и алюмосиликатных накипей
  • 4.3.4. Условия образования железоокисных и железофосфатных накипей
  • 4.3.5. Условия образования медных накипей
  • 4.3.6. Условия образования отложений легкорастворимых соединений
  • 4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
  • 4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
  • 4.6. Отложения по паровому тракту
  • 4.6.1. Поведение примесей пара в пароперегревателе
  • 4.6.2. Поведение примесей пара в проточной части паровых турбин
  • 4.7. Образование отложений в водогрейном оборудовании
  • 4.7.1. Основные сведения об отложениях
  • 4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
  • 4.8. Химические очистки оборудования тэс и котельных
  • 4.8.1. Назначение химических очисток и выбор реагентов
  • 4.8.2. Эксплуатационные химические очистки паровых турбин
  • 4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
  • 4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
  • Технологические режимы очистки
  • 4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
  • Глава пятая водно-химический режим (вхр) в энергетике
  • 5.1. Водно-химические режимы барабанных котлов
  • 5.1.1. Физико-химическая характеристика внутрикотловых процессов
  • 5.1.2. Методы коррекционной обработки котловой и питательной воды
  • 5.1.2.1. Фосфатная обработка котловой воды
  • 5.1.2.2. Амминирование и гидразинная обработка питательной воды
  • 5.1.3. Загрязнения пара и способы их удаления
  • 5.1.3.1. Основные положения
  • 5.1.3.2. Продувка барабанных котлов тэс и котельных
  • 5.1.3.3. Ступенчатое испарение и промывка пара
  • 5.1.4. Влияние водно-химического режима на состав и структуру отложений
  • 5.2. Водно-химические режимы блоков скд
  • 5.3. Водно-химический режим паровых турбин
  • 5.3.1. Поведение примесей в проточной части турбин
  • 5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
  • 5.3.3. Водно-химический режим турбин насыщенного пара
  • 5.4. Водный режим конденсаторов турбин
  • 5.5. Водно-химический режим тепловых сетей
  • 5.5.1. Основные положения и задачи
  • 5.5.3. Повышение надежности водно-химического режима теплосетей
  • 5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
  • 5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
  • Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
  • Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
  • Карбонат кальция задает загадки…
  • Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
  • Как предупредить отложения и коррозию в небольших водогрейных котлах
  • Какие соединения железа осаждаются в водогрейных котлах?
  • В трубках псв образуются отложения из силиката магния
  • Как взрываются деаэраторы?
  • Как спасти трубопроводы умягченной воды от коррозии?
  • Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
  • Почему «горели» трубы только заднего экрана?
  • Как удалять из экранных труб органо-железистые отложения?
  • Химические «перекосы» в котловой воде
  • Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
  • Свищи в трубах котла появились до начала его эксплуатации!
  • Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
  • Почему разрушались трубы в поверхностном пароохладителе?
  • Чем опасен котлам конденсат?
  • Основные причины аварийности тепловых сетей
  • Проблемы котельных птицепрома Омского региона
  • Почему не работали цтп в Омске
  • Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
  • Почему высока коррозионная аварийность на новых трубопроводах теплосети?
  • Сюрпризы природы? Белое море наступает на Архангельск
  • Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
  • – Увеличена дозировка коагулянта на предочистку;
  • Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
  • Требования к приборам ахк (Автоматика химического контроля)
  • Требования к средствам лабораторного контроля
  • Сравнение технических характеристик приборов различных фирм производителей
  • 3.2. Коррозия стали в перегретом паре

    Система железо – водяной пар термодинамически неустойчива. Взаимодействие этих веществ может протекать с образованием магнетита Fe 3 O 4 или вюстита FeO:

    ;

    Анализ реакций (2.1) – (2.3) свидетельствует о своеобразном разложении водяного пара при взаимодействии с металлом с образованием молекулярного водорода, который не является следствием собственно термической диссоциации водяного пара. Из уравнений (2.1) – (2.3) следует, что при коррозии сталей в перегретом паре в отсутствие кислорода на поверхности может образоваться только Fe 3 О 4 или FeO.

    При наличии в перегретом паре кислорода (например, в нейтральных водных режимах, с дозированием кислорода в конденсат) в перегревательной зоне возможно образование гематита Fe 2 O 3 за счет доокисления магнетита.

    Считают, что коррозия в паре, начиная с температуры 570 °С, является химической. В настоящее время предельная температура перегрева для всех котлов снижена до 545 °С, и, следовательно, в пароперегревателях происходит электрохимическая коррозия. Выходные участки первичных пароперегревателей выполняют из коррозионно-стойкой аустенитной нержавеющей стали, выходные участки промежуточных пароперегревателей, имеющие ту же конечную температуру перегрева (545 °С), – из перлитных сталей. Поэтому коррозия промежуточных пароперегревателей обычно проявляется в сильной степени.

    В результате воздействия пара на сталь на ее первоначально чистой поверхности постепенно образуется так называемый топотактический слой, плотно сцепленный с самим металлом и потому защищающий его от коррозии. С течением времени на этом слое нарастает второй так называемый эпитактический слой. Оба эти слоя для уровня температур пара до 545 °С представляют собой магнетит, но структура их не одинакова – эпитактический слой крупнозернист и не защищает от коррозии.

    Скорость разложения пара

    мгН 2 /(см 2 ч)

    Рис. 2.1. Зависимость скорости разложения перегретого пара

    от температуры стенки

    Влиять на коррозию перегревательных поверхностей методами водного режима не удается. Поэтому основная задача водно-химического режима собственно пароперегревателей заключается в систематическом наблюдении за состоянием металла пароперегревателей с целью недопущения разрушения топотактического слоя. Это может происходить за счет попадания в пароперегреватели и осаждения в них отдельных примесей, особенно солей, что возможно, например, в результате резкого повышения уровня в барабане котлов высокого давления. Связанные с этим отложения солей в пароперегревателе могут привести как к повышению температуры стенки, так и к разрушению защитной оксидной топотактической пленки, о чем можно судить по резкому возрастанию скорости разложения пара (рис. 2.1).

    3.3. Коррозия тракта питательной воды и конденсатопроводов

    Значительная часть коррозионных повреждений оборудования тепловых электростанций приходится на долю тракта питательной воды, где металл находится в наиболее тяжелых условиях, причиной чего является коррозионная агрессивность соприкасающихся с ним химически обработанной воды, конденсата, дистиллята и смеси их. На паротурбинных электростанциях основным источником загрязнения питательной воды соединениями меди является аммиачная коррозия конденсаторов турбин и регенеративных подогревателей низкого давления, трубная система которых выполнена из латуни.

    Тракт питательной воды паротурбинной электростанции можно разделить на два основных участка: до термического деаэратора и после него, причем условия протекания в них коррозии резко различны. Элементы первого участка тракта питательной воды, расположенные до деаэратора, включают трубопроводы, баки, конденсатные насосы, конденсатопроводы и другое оборудование. Характерной особенностью коррозии этой части питательного тракта является отсутствие возможности истощения агрессивных агентов, т. е. угольной кислоты и кислорода, содержащихся в воде. Вследствие непрерывного поступления и движения новых порций воды по тракту происходит постоянное пополнение их убыли. Непрерывное удаление части продуктов реакции железа с водой и приток свежих порций агрессивных агентов создают благоприятные условия для интенсивного протекания коррозионных процессов.

    Источником появления кислорода в конденсате турбин являются присосы воздуха в хвостовой части турбин и в сальниках конденсатных насосов. Подогрев воды, содержащей О 2 и СО 2 в поверхностных подогревателях, расположенных на первом участке питательного тракта, до 60–80 °С и выше приводит к серьезным коррозионным повреждениям латунных труб. Последние становятся хрупкими, и нередко латунь после нескольких месяцев работы приобретает губчатую структуру в результате ярко выраженной избирательной коррозии.

    Элементы второго участка тракта питательной воды – от деаэратора до парогенератора – включают питательные насосы и магистрали, регенеративные подогреватели и экономайзеры. Температура воды на этом участке в результате последовательного подогрева воды в регенеративных подогревателях и водяных экономайзерах приближается к температуре котловой воды. Причиной коррозии оборудования, относящегося к этой части тракта, является главным образом воздействие на металл растворенной в питательной воде свободной углекислоты, источником которой является добавочная химически обработанная вода. При повышенной концентрации ионов водорода (рН < 7,0), обусловленной наличием растворенной углекислоты и значительным подогревом воды, процесс коррозии на этом участке питательного тракта развивается преимущественно с выделением водорода. Коррозия имеет сравнительно равномерный характер.

    При наличии оборудования, изготовленного из латуни (подогреватели низкого давления, конденсаторы), обогащение воды соединениями меди по пароконденсатному тракту протекает в присутствии кислорода и свободного аммиака. Увеличение растворимости гидратированной окиси меди происходит за счет образования медно-аммиачных комплексов, например Сu(NH 3) 4 (ОН) 2 . Эти продукты коррозии латунных трубок подогревателей низкого давления начинают разлагаться на участках тракта регенеративных подогревателей высокого давления (п. в. д.) с образованием менее растворимых окислов меди, частично осаждающихся на поверхности трубок п. в. д. Медистые отложения на трубках п. в. д. способствуют их коррозии во время работы и длительной стоянки оборудования без консервации.

    При недостаточно глубокой термической деаэрации питательной воды язвенная коррозия наблюдается преимущественно на входных участках экономайзеров, где кислород выделяется вследствие заметного повышения температуры питательной воды, а также в застойных участках питательного тракта.

    Теплоиспользующая аппаратура потребителей пара и трубопроводы, по которым возвращается производственный конденсат на ТЭЦ, подвергаются коррозии под действием содержащихся в нем кислорода и угольной кислоты. Появление кислорода объясняется контактом конденсата с воздухом в открытых баках (при открытой схеме сбора конденсата) и подсосами через неплотности в оборудовании.

    Основными мероприятиями для предотвращения коррозии оборудования, расположенного на первом участке тракта питательной воды (от водоподготовительной установки до термического деаэратора), являются:

    1) применение защитных противокоррозионных покрытий поверхностей водоподготовительного оборудования и бакового хозяйства, которые омываются растворами кислых реагентов или коррозионно-агрессивными водами с использованием резины, эпоксидных смол, лаков на перхлорвиниловой основе, жидкого найрита и силикона;

    2) применение кислотостойких труб и арматуры, изготовленных из полимерных материалов (полиэтилена, полиизобутилена, полипропилена и др.) либо стальных труб и арматуры, футерованных внутри защитными покрытиями, наносимыми методом газопламенного напыления;

    3) применение труб теплообменных аппаратов из коррозионно-стойких металлов (красная медь, нержавеющая сталь);

    4) удаление свободной углекислоты из добавочной химически обработанной воды;

    5) постоянный вывод неконденсирующихся газов (кислорода и угольной кислоты) из паровых камер регенеративных подогревателей низкого давления, охладителей и подогревателей сетевой воды и быстрый отвод образующегося в них конденсата;

    6) тщательное уплотнение сальников конденсатных насосов, арматуры и фланцевых соединений питательных трубопроводов, находящихся под вакуумом;

    7) обеспечение достаточной герметичности конденсаторов турбин со стороны охлаждающей воды и воздуха и контроль за присосами воздуха с помощью регистрирующих кислородомеров;

    8) оснащение конденсаторов специальными дегазационными устройствами с целью удаления кислорода из конденсата.

    Для успешной борьбы с коррозией оборудования и трубопроводов, расположенных на втором участке тракта питательной воды (от термических деаэраторов до парогенераторов), применяются следующие мероприятия:

    1) оснащение ТЭС термическими деаэраторами, выдающими при любых режимах работы деаэрированную воду с остаточным содержанием кислорода и углекислоты, не превышающим допустимые нормы;

    2) максимальный вывод неконденсирующихся газов из паровых камер регенеративных подогревателей высокого давления;

    3) применение коррозионно-стойких металлов для изготовления соприкасающихся с водой элементов питательных насосов;

    4) противокоррозионная защита питательных и дренажных баков путем нанесения неметаллических покрытий, стойких при температурах до 80–100 °С, например асбовинила (смеси лака этиноль с асбестом) или лакокрасочных материалов на основе эпоксидных смол;

    5) подбор коррозионно-стойких конструкционных металлов, пригодных для изготовления труб регенеративных подогревателей высокого давления;

    6) постоянная обработка питательной воды щелочными реагентами с целью поддержания заданного оптимального значения рН питательной воды, при котором подавляется углекислотная коррозия и обеспечивается достаточная прочность защитной пленки;

    7) постоянная обработка питательной воды гидразином для связывания остаточного кислорода после термических деаэраторов и создания ингибиторного эффекта торможения перехода соединений железа с поверхности оборудования в питательную воду;

    8) герметизация баков питательной воды путем организации так называемой закрытой системы, чтобы предотвратить попадание кислорода с питательной водой в экономайзеры парогенераторов;

    9) осуществление надежной консервации оборудования тракта питательной воды во время его простоя в резерве.

    Эффективным методом снижения концентрации продуктов коррозии в конденсате, возвращаемом на ТЭЦ потребителями пара, является введение в отборный пар турбин, направляемый потребителям, пленкообразующих аминов – октадециламина или его заменителей. При концентрации этих веществ в паре, равной 2–3 мг/дм 3 , можно снизить содержание окислов железа в производственном конденсате в 10–15 раз. Дозирование водной эмульсии полиаминов с помощью насоса-дозатора не зависит от концентрации в конденсате угольной кислоты, так как действие их не связано с нейтрализующими свойствами, а основано на способности этих аминов образовывать на поверхности стали, латуни и других металлов нерастворимые и несмачиваемые водой пленки.


  • Коррозионные явления в котлах чаще всего проявляются на внутренней теплонапряженной поверхности и сравнительно реже - на наружной.

    В последнем случае разрушение металла обусловлено - в большинстве случаев - совместным действием коррозии и эрозии, которая иногда имеет преобладающее значение.
    Внешний признак эрозионного разрушения - чистая поверхность металла. При коррозионном же воздействии продукты коррозии обычно сохраняются на его поверхности.
    Внутренние (в водной среде) коррозионные и накипные процессы могут усугублять наружную коррозию (в газовой среде) из-за теплового сопротивления слоя накипных и коррозионных отложений, и, следовательно, роста температуры на поверхности металла.
    Наружная коррозия металла (со стороны топки котла) зависит от разных факторов, но, прежде всего, - от вида и состава сжигаемого топлива.

    Коррозия газо-мазутных котлов
    В мазуте содержатся органические соединения ванадия и натрия. Если на стенке трубы, обращенной в топку, накапливаются расплавленные отложения шлака, содержащего соединения ванадия (V), то при большом избытке воздуха и/или температуре поверхности металла 520-880 оС происходят реакции:
    4Fe + 3V2O5 = 2Fe2O3 + 3V2O3 (1)
    V2O3 + O2 = V2O5 (2)
    Fe2O3 + V2O5 = 2FeVO4 (3)
    7Fe + 8FeVO4 = 5Fe3О4 + 4V2O3 (4)
    (Соединения натрия) + О2 = Na2O (5)
    Возможен и другой механизм коррозии с участием ванадия (жидкая эвтектическая смесь):
    2Na2O . V2O4 . 5V2O5 + O2 = 2Na2O . 6V2O5 (6)
    Na2O . 6V2O5 + М = Na2O . V2O4 . 5V2O5 + MO (7)
    (М - металл)
    Соединения ванадия и натрия при сгорании топлива окисляются до V2O5 и Na2O. В отложениях, прилипающих к поверхности металла, Na2O - связующее. Жидкость, образующаяся в результате реакций (1)-(7), расплавляет защитную пленку магнетита (Fe3O4), что приводит к окислению металла под отложениями (температура расплавления отложений (шлака) - 590-880 оС).
    В результате указанных процессов стенки экранных труб, обращенных к топке, равномерно утончаются.
    Росту температуры металла, при которой соединения ванадия становятся жидкими, способствуют внутренние накипные отложения в трубах. И, таким образом, при достижении температуры предела текучести металла возникает разрыв трубы - следствие совместного действия внешних и внутренних отложений.
    Корродируют и детали крепления трубных экранов, а также выступы сварных швов труб - рост температуры на их поверхности ускоряется: они не охлаждаются пароводяной смесью, как трубы.
    Мазут может содержать серу (2,0-3,5 %) в виде органических соединений, элементарной серы, сульфата натрия (Na2SO4), попадающего в нефть из пластовых вод. На поверхности металла в таких условиях ванадиевая коррозия сопровождается сульфидно-оксидной. Их совместное действие в наибольшей степени проявляется, когда в отложениях присутствуют 87 % V2O5 и 13 % Na2SO4, что соответствует содержанию в мазуте ванадия и натрия в соотношении 13/1.
    Зимой при разогреве мазута паром в емкостях (для облегчения слива) в него дополнительно попадает вода в количестве 0,5-5,0 %. Следствие: увеличивается количество отложений на низкотемпературных поверхностях котла, и, очевидно, растет коррозия мазутопроводов и мазутных емкостей.

    Кроме описанной выше схемы разрушения экранных труб котлов, коррозия пароперегревателей, труб фестонов, кипятильных пучков, экономайзеров имеет некоторые особенности из-за повышенных - в некоторых сечениях - скоростей газов, особенно содержащих несгоревшие частицы мазута и отслоившиеся частицы шлака.

    Идентификация коррозии
    Наружная поверхность труб покрыта плотным эмалевидным слоем отложений серого и темно-серого цвета. На стороне, обращенной в топку, - утончение трубы: плоские участки и неглубокие трещинки в виде «рисок» хорошо видны, если очистить поверхность от отложений и оксидных пленок.
    Если труба аварийно разрушена, то видна сквозная продольная неширокая трещина.

    Коррозия пылеугольных котлов
    В коррозии, образуемой действием продуктов сжигания углей, определяющее значение имеют сера и ее соединения. Кроме того, на течение коррозионных процессов влияют хлориды (в основном NaCl) и соединения щелочных металлов. Наиболее вероятна коррозия при содержании в угле более 3,5 % серы и 0,25 % хлора.
    Летучая зола, содержащая щелочные соединения и оксиды серы, отлагается на поверхности металла при температуре 560-730 оС. При этом в результате происходящих реакций образуются щелочные сульфаты, например K3Fe(SO4)3 и Na3Fe(SO4)3. Этот расплавленный шлак, в свою очередь, разрушает (расплавляет) защитный оксидный слой на металле - магнетит (Fe3O4).
    Скорость коррозии максимальна при температуре металла 680-730 оС, при ее увеличении скорость уменьшается из-за термического разложения коррозионных веществ.
    Наибольшая коррозия - в выходных трубах пароперегревателя, где наиболее высокая температура пара.

    Идентификация коррозии
    На экранных трубах можно наблюдать плоские участки с обеих сторон трубы, подвергающихся коррозионному разрушению. Эти участки расположены под углом друг к другу 30-45 оС и покрыты слоем отложений. Между ними - сравнительно «чистый» участок, подвергающийся «лобовому» воздействию газового потока.
    Отложения состоят из трех слоев: внешний - пористая летучая зола, промежуточный слой - белесые водорастворимые щелочные сульфаты, внутренний слой - блестящие черные оксиды железа (Fe3O4) и сульфиды (FeS).
    На низкотемпературных частях котлов - экономайзер, воздухоподогреватель, вытяжной вентилятор - температура металла падает ниже «точки росы» серной кислоты.
    При сжигании твердого топлива температура газов уменьшается от 1650 оС в факеле до 120 оС и менее в дымовой трубе.
    Из-за охлаждения газов образуется серная кислота в паровой фазе, и при контакте с более холодной поверхностью металла пары конденсируются с образованием жидкой серной кислоты. «Точка росы» серной кислоты - 115-170 оС (может быть и больше - зависит от содержания в газовом потоке паров воды и оксида серы (SO3)).
    Процесс описывается реакциями:
    S + O2 = SO2 (8)
    SO3 + H2O = H2SO4 (9)
    H2SO4 + Fe = FeSO4 + H2 (10)
    В присутствии оксидов железа и ванадия возможно каталитическое окисление SO3:
    2SO2 + O2 = 2SO3 (11)
    В некоторых случаях сернокислотная коррозия при сжигании каменного угля менее значима, чем при сжигании бурого, сланца, торфа и даже природного газа - из-за относительно большего выделения водяного пара из них.

    Идентификация коррозии
    Этот вид коррозии вызывает равномерное разрушение металла. Обычно поверхность шероховатая, с небольшим налетом ржавчины, и похожа на поверхность без коррозионных явлений. При длительном воздействии металл может быть покрыт отложениями продуктов коррозии, которые нужно осторожно снять при обследовании.

    Коррозия во время перерывов в эксплуатации
    Этот вид коррозии проявляется на экономайзере и в тех местах котла, где наружные поверхности покрыты соединениями серы. При остывании котла температура металла падает ниже «точки росы» и, как описано выше, если есть сернистые отложения, образуется серная кислота. Возможно промежуточное соединение - сернистая кислота (H2SO3), но она очень нестойкая и сразу превращается в серную кислоту.

    Идентификация коррозии
    Поверхности металла обычно покрыты нанесениями. Если их удалить, то обнаружатся участки разрушения металла, где были сернистые отложения и участки некорродированного металла. Такой внешний вид отличает коррозию на остановленном котле от вышеописанной коррозии металла экономайзера и других «холодных» частей работающего котла.
    При обмывке котла коррозионные явления распределены более или менее равномерно по металлической поверхности из-за размывания сернистых отложений и недостаточной осушке поверхностей. При недостаточной обмывке коррозия локализована там, где были сернистые соединения.

    Эрозия металла
    Эрозийному разрушению металла при определенных условиях подвергаются разные системы котла как с внутренней, так и с наружной стороны обогреваемого металла, и там, где возникают турбулентные потоки с большой скоростью.
    Ниже рассматривается только эрозия турбин.
    Турбины подвергаются эрозии от ударов твердых частиц и капелек конденсата пара. Твердые частицы (оксиды) отслаиваются от внутренней поверхности пароперегревателей и паропроводов, особенно в условиях переходных тепловых процессов.

    Капельки конденсата пара в основном разрушают поверхности лопаток последней ступени турбины и дренажные трубопроводы. Возможно эрозионно-коррозионное воздействие конденсата пара, если конденсат «кислый» - рН ниже пяти единиц. Коррозия также имеет опасный характер при наличии в водяных капельках пара хлоридов (до 12 % от массы отложений) и едкого натра.

    Идентификация эрозии
    Разрушение металла от ударов капель конденсата наиболее заметно на передних кромках лопаток турбин. Кромки покрыты тонкими поперечными зубцами и канавками (бороздками), могут быть наклонные конические выступы, направленные в сторону ударов. Выступы есть на передних кромках лопаток и почти отсутствуют на их задних плоскостях.
    Повреждения от твердых частиц имеют вид разрывов, микровмятин и зазубрин на передних кромках лопаток. Бороздки и наклонные конусы отсутствуют.

    а) Кислородная коррозия

    Наиболее часто от кислородной коррозии страдают стальные водяные экономайзеры котельных агрегатов, которые при неудовлетворительной деаэрации питательной воды выходят из строя через 2-3 года после установки.

    Непосредственным результатом кислородной коррозии стальных экономайзеров является образование в трубках свищей, через которые с большой скоростью вытекает струя воды. Подобные струи, направленные на стенку соседней трубы, способны изнашивать ее вплоть до образования сквозных отверстий. Поскольку трубы экономайзеров располагаются достаточно компактно, что образовавшийся коррозионный свищ способен вызвать массовое повреждение труб, если котельный агрегат длительно остается в работе с появившимся свищом. Чугунные экономайзеры кислородной коррозией не повреждаются.

    Кислородной коррозии чаще подвергаются входные участки экономайзеров. Однако при значительной концентрации кислорода в питательной воде он проникает и в котельный агрегат. Здесь кислородной коррозии подвергаются главным образом барабаны и опускные трубы. Основной формой кислородной коррозии является образование в металле углублений (язв), приводящих при их развитии к образованию свищей.

    Увеличение давления интенсифицирует кислородную коррозию. Поэтому для котельных агрегатов с давлением 40 ата и выше опасными являются даже «Проскоки» кислорода в деаэраторах. Существенное значение имеет состав воды, с которой соприкасается металл. Наличие небольшого количества щелочи усиливает локализацию коррозии, присутствие хлоридов рассредоточивает ее по поверхности.

    б) Стояночная коррозия

    Котельные агрегаты, находящиеся в простое, поражаются электрохимической коррозией, которая получила название стояночной. По условиям эксплуатации котельные агрегаты нередко выводят из работы и ставят в резерв или останавливают на длительное время.

    При останове котельного агрегата в резерв давление в нем начинает падать и в барабане возникает вакуум, вызывающий проникновение воздуха и обогащение котловой воды кислородом. Последнее создает условия для появления кислородной коррозии. Даже в том случае, когда вода полностью удаляется из котельного агрегата, внутренняя поверхность его не бывает сухой. Колебания температуры и влажности воздуха вызывают явление конденсации влаги из атмосферы, заключенной внутри котельного агрегата. Наличие же на поверхности металла пленки, обогащенной при доступе воздуха кислородом, создает благоприятные условия для развития электрохимической коррозии. Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

    Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

    Поэтому при выводе котельного агрегата из работы в длительный простой необходимо удалить имеющиеся отложения промывкой.

    Стояночная коррозия может нанести серьезные повреждения котельным агрегатам, если не будут приняты специальные меры их защиты. Опасность ее заключается еще и в том, что созданные, ею в период простоя коррозионные очаги продолжают действовать и в процессе работы.

    Для предохранения котельных агрегатов от стояночной коррозии производят их консервацию.

    в) Межкристаллитная коррозия

    Межкристаллитная коррозия возникает в заклепочных швах и вальцовочных соединениях паровых котельных агрегатов, которые смываются котловой водой. Она характеризуется появлением в металле трещин, вначале весьма тонких, незаметных для глаза, которые развиваясь, превращаются в большие видимые трещины. Они проходят между зернами металла, почему эта коррозия и называется межкристаллитной. Разрушение металла при этом происходит без деформации, поэтому эти разрушения называют хрупкими.

    Опытом установлено, что межкристаллитная коррозия возникает лишь при одновременном наличии 3-х условий:

    1) Высоких растягивающих напряжений в металле, близких к пределу текучести.
    2) Неплотности в заклепочных швах или вальцовочных соединениях.
    3) Агрессивных свойств котловой воды.

    Отсутствие одного из перечисленных условий исключает появление хрупких разрушений, что и используют на практике для борьбы с межкристаллитной коррозией.

    Агрессивность котловой воды определяется составом растворенных в ней солей. Важное значение имеет содержание едкого натра, который при высоких концентрациях (5-10%) реагирует с металлом. Такие концентрации достигаются в неплотностях заклепочных швов и вальцовочных соединений, в которых происходит упаривание котловой воды. Вот почему наличие неплотностей может обусловить появление хрупких разрушений при соответствующих условиях. Кроме этого, важным показателем агрессивности котловой воды является относительная щелочность — Щот.

    г) Пароводяная коррозия

    Пароводяной коррозией называется разрушение металла в результате химического взаимодействия с водяным паром: ЗFe + 4Н20 = Fe304 + 4Н2
    Разрушение металла становится возможным для углеродистых сталей при увеличении температуры стенки труб до 400°С.

    Продуктами коррозии является газообразный водород и магнетит. Пароводяная коррозия имеет как равномерный, так и локальный (местный) характер. В первом случае на поверхности металла образуется слой продуктов коррозии. Местный характер коррозии имеет вид язв, бороздок, трещин.

    Основной причиной возникновения паровой коррозии является нагрев стенки трубки до критической температуры, при которой ускоряется окисление металла водой. Поэтому борьба с пароводяной коррозией осуществляется путем устранения причин, вызывающих перегрев металла.

    Пароводяную коррозию нельзя устранить путем какого-то изменения или улучшения водно-химического режима котельного агрегата, так как причины этой коррозии кроются в топочных и внутрикотловых гидродинамических процессах, а также условиях эксплуатации.

    д) Подшламовая коррозия

    Этот вид коррозии происходит под слоем шлама, образовавшегося на внутренней поверхности трубы котельного агрегата, вследствие питания котла недостаточно очищенной водой.

    Повреждения металла, возникающие при подшламовой коррозии, имеют локальный (язвенный) характер и располагаются обычно на полупериметре трубы, обращенном в топку. Образующиеся язвы имеют вид раковин диаметром до 20 мм и более, заполненных окислами железа, создающими «бугорок» под язвой.

    Эта коррозия по размеру и интенсивности часто бывает более значительной и опасной, чем коррозия котлов во время их работы.

    При оставлении воды в системах в зависимости от ее температуры и доступа воздуха могут встречаться самые разнообразные случаи проявления стояночной коррозии. Следует прежде всего отметить крайнюю нежелательность наличия воды в трубах агрегатов при нахождении их в резерве.

    Если вода по тем или иным причинам остается в системе, то может наблюдаться сильная стояночная коррозия в паровом и особенно в водяном пространстве емкости (преимущественно по ватерлинии) при температуре воды 60—70°С. Поэтому на практике довольно часто наблюдается различная по интенсивности стояночная коррозия, несмотря на одинаковые режимы останова системы и качество содержащейся в них воды; аппараты со значительной тепловой аккумуляцией подвергаются более сильной коррозии, чем аппараты, имеющие размеры топки и поверхность нагрева, так как котловая вода в них быстрее охлаждается; температура ее становится ниже 60—70°С.

    При температуре воды выше 85—90°С (например, при кратковременных остановах аппаратов) общая коррозия снижается, причем коррозия металла парового пространства, в котором наблюдается в этом случае повышенная конденсация паров, может превышать коррозию металла водяного пространства. Стояночная коррозия в паровом пространстве во всех случаях более равномерная, чем в водяном пространстве котла.

    Развитию стояночной коррозии сильно способствует скапливающийся на поверхностях котла шлам, который обычно удерживает влагу. В связи с этим значительные коррозионные раковины часто обнаруживаются в агрегатах и трубах вдоль нижней образующей и на их концах, т. е. на участках наибольшего скопления шлама.

    Способы консервации оборудования, находящегося в резерве

    Для консервации оборудования могут быть применены следующие способы:

    а) высушивание — удаление из агрегатов воды и влаги;

    б) заполнение их растворами едкого натра, фосфата, силиката, нитрита натрия, гидразина;

    в) заполнение технологической системы азотом.

    Способ консервации следует выбирать в зависимости от характера и длительности простоя, а также от типа и конструктивных особенностей оборудования.

    Простои оборудования по продолжительности можно разделить на две группы: кратковременные—не более 3 сут и длительные — более 3 сут.

    Различают два вида кратковременных простоев:

    а) плановые, связанные с выводом в резерв на выходные дни в связи с падением нагрузки или выводом в резерв на ночное время;

    б) вынужденные — из-за выхода из строя труб или повреждений других узлов оборудования, для устранения которых не требуется более длительный останов.

    В зависимости от цели длительные простои можно разделить на следующие группы: а) вывод оборудования в резерв; б) текущие ремонты; в) капитальные ремонты.

    При кратковременных простоях оборудования необходимо использовать консервацию путем заполнения деаэрированной водой с поддержанием избыточного давления или газовый (азотный) способ. Если необходим аварийный останов, то единственно приемлемый способ — консервация азотом.

    При выводе системы в резерв или длительном простое без выполнения ремонтных работ консервацию целесообразно вести путем заполнения раствором нитрита или силиката натрия. В этих случаях можно использовать и азотную консервацию, обязательно принимая меры для создания плотности системы с целью предотвращения чрезмерного расхода газа и непроизводительной работы азотной установки, а также создания безопасных условий при обслуживании оборудования.

    Способы консервации путем создания избыточного давления, заполнения азотом можно использовать независимо от конструктивных особенностей поверхностей нагрева оборудования.

    Для предотвращения стояночной коррозии металла во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свойства в течение не менее 1—2 мес после слива консервирующего раствора, поскольку опорожнение и разгерметизация системы неизбежны. Срок действия защитной пленки на поверхности металла после обработки ее нитритом натрия может достигать 3 мес.

    Способы консервации с использованием воды и растворов реагентов практически неприемлемы для защиты от стояночной коррозии промежуточных пароперегревателей котлов из-за трудностей, связанных с их заполнением и последующей отмывкой.

    Способы консервации водогрейных и паровых котлов низкого давления, а также другого оборудования замкнутых технологических контуров тепло- и водоснабжения во многом отличаются от применяемых в настоящее время методов предупреждения стояночной коррозии на ТЭС. Ниже описываются основные способы предупреждения коррозии в режиме простаивания оборудования аппаратов подобных циркуляционных систем с учетом специфики их работы.

    Упрощенные способы консервации

    Эти способы целесообразно применять для мелких котлов. Они заключаются в полном удалении воды из котлов и размещении в них влагопоглотителей: прокаленного хлористого кальция, негашеной извести, силикагеля из расчета 1—2 кг на 1 м 3 объема.

    Этот способ консервации пригоден при температурах помещения ниже и выше нуля. В помещениях, отапливаемых в зимнее время, может быть реализован один из контактных способов консервации. Он сводится к заполнению всего внутреннего объема агрегата щелочным раствором (NaOH, Na 3 P0 4 и др.), обеспечивающим полную устойчивость защитной пленки на поверхности металла даже при насыщении жидкости кислородом.

    Обычно применяют растворы, содержащие от 1,5— 2 до 10 кг/м 3 NaOH или 5—20 кг/м 3 Na 3 P0 4 в зависимости от содержания нейтральный солей в исходной воде. Меньшие значения относятся к конденсату, большие — к воде, содержащей до 3000 мг/л нейтральных солей.

    Коррозию можно предупредить также способом избыточного давления, при котором давление пара в остановленном агрегате постоянно поддерживается на уровне выше атмосферного давления, а температура воды остается выше 100°С, чем предотвращается доступ основного коррозионного агента — кислорода.

    Важное условие эффективности и экономичности любого способа защиты — максимально возможная герметичность паро-водяной арматуры во избежание слишком быстрого снижения давления, потерь защитного раствора (или газа) или попадания влаги. Кроме того, во многих случаях полезна предварительная очистка поверхностей от различных отложений (солей, шлама, накипи).

    При осуществлении различных способов защиты от стояночной коррозии необходимо иметь в виду следующее.

    1. При всех видах консервации необходимо предварительное удаление (промывка) отложений легкорастворимых солей (см. выше) во избежание усиления стояночной коррозии на отдельных участках защищаемого агрегата. Обязательным является осуществление этого мероприятия при контактной консервации, иначе возможна интенсивная местная коррозия.

    2. По аналогичным соображениям желательно удаление перед длительной консервацией всех видов нерастворимых отложений (шлама, накипи, оксидов железа).

    3. При ненадежности арматуры необходимо отключение резервного оборудования от работающих агрегатов с помощью заглушек.

    Просачивание пара и воды менее опасно при контактной консервации, но недопустимо при сухом и газовом методах защиты.

    Выбор влагопоглотителей определяется сравнительной доступностью реагента и желательностью получения максимально возможной удельной влагоемкости. Наилучший влагопоглотитель — зерненый хлористый кальций. Негашеная известь значительно хуже хлористого кальция не только вследствие меньшей влагоемкости, но и быстрой потери ее активности. Известь поглощает из воздуха не только влагу, но и углекислоту, в результате чего она покрывается слоем углекислого кальция, препятствующего дальнейшему поглощению влаги.

    2.1. Поверхности нагрева.

    Наиболее характерными повреждениями труб поверхностей нагрева являются: трещины поверхности экранных и кипятильных труб, коррозионные разъедания наружных и внутренних поверхностей труб, разрывы, утонения стенок труб, трещины и разрушения колокольчиков.

    Причины появления трещин, разрывов и свищей: отложения в трубах котлов солей, продуктов коррозии, сварочного грата, замедляющих циркуляцию и вызывающих перегрев металла, внешние механические повреждения, нарушение водно-химического режима.

    Коррозия наружной поверхности труб подразделяется на низкотемпературную и высокотемпературную. Низкотемпературная коррозия возникает в местах установки обдувочных приборов, когда в результате неправильной эксплуатации допускается образование конденсата на занесенных сажей поверхностях нагрева. Высокотемпературная коррозия может иметь место на второй ступени пароперегревателя при сжигании сернистого мазута.

    Наиболее часто встречается коррозия внутренней поверхности труб, возникающая при взаимодействии коррозионноактивных газов (кислорода, углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде, с металлом труб. Коррозия внутренней поверхности труб проявляется в образовании оспин, язв, раковин и трещин.

    К коррозии внутренней поверхности труб также относятся: кислородная стояночная коррозия, подшламовая щелочная коррозия кипятильных и экранных труб, коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах.

    Повреждения труб из-за ползучести характеризуются увеличением диаметра и образованием продольных трещин. Деформации в местах гибов труб и сварных соединений могут иметь различные направления.

    Прогары и окалннообразовання в трубах происходят вследствие их перегрева до температур, превышающих расчетную.

    Основные виды повреждений сварных швов выполненных ручной дуговой сваркой - свищи, возникающие из-за непроваров, шлаковых включений, газовых пор, несплавления по кромкам труб.

    Основными дефектами и повреждениями поверхности пароперегревателя являются: коррозия и окалинообразование на наружной и внутренней поверхности труб, трещины, риски и расслоение металла труб, свищи и разрывы труб, дефекты сварных соединений труб, остаточная деформация в результате ползучести.

    Повреждения угловых швов приварки змеевиков и штуцеров к коллекторам, вызывающие нарушением технологии сварки, имеют вид кольцевых трещин вдоль линии сплавления со стороны змеевика или штуцеров.

    Характерными неисправностями, возникающими при эксплуатации поверхностного пароохладителя котла ДЕ-25-24-380ГМ являются: внутренняя и наружная коррозия труб, трещины и свищи в сварных

    швах и на гибах труб, раковины, могущие возникнуть при ремонтах, риски на зеркале фланцев, течи фланцевых соединений вследствие перекоса фланцев. При гидравлическом испытании котла можно

    определить только наличие неплотностей в пароохладителе. Для выявления скрытых дефектов следует провести индивидуальное гидравлическое испытание пароохладителя.

    2.2. Барабаны котла.

    Характерными повреждениями барабанов котла являются: трещины-надрывы на внутренней и наружной поверхности обечаек и днищ, трещины-надрывы вокруг трубных отверстий на внутренней поверхности барабанов и на цилиндрической поверхности трубных отверстий, межкристаллитная коррозия обечаек и днищ, коррозионные разъединения поверхностей обечаек и днищ, овальность барабана оддулины (выпучины) на поверхностях барабанов, обращенных в топку, вызванные температурным воздействием факела в случаях разрушения (или выпадения) отдельных частей футеровки.

    2.3. Металлоконструкции и обмуровка котла.

    В зависимости от качества профилактической работы, а также от режимов и сроков эксплуатации котла, его металлоконструкции могут иметь следующие дефекты и повреждения: разрывы и изгибы стоек и связей, трещины, коррозионные повреждения поверхности металла.

    В результате длительного воздействия температур имеют место растрескивание и нарушение целостности фасонного кирпича, закрепляемого на штырях к верхнему барабану со стороны топки, а также трещины в кирпичной кладке по нижнему барабану и поду топки.

    Особенно часто встречается разрушение кирпичной амбразуры горелки и нарушение геометрических размеров за счет оплавления кирпича.

    3. Проверки состояния элементов котла.

    Проверка состояния элементов котла, выведенного в ремонт, производится по результатам гидравлического испытания, наружного и внутреннего осмотра, а также других видов контроля, проводимых в объеме и соответствии с программой экспертного обследования котла (раздел «Программа экспертного обследования котлов»).

    3.1. Проверка поверхностей нагрева.

    Осмотр наружных поверхностей трубных элементов особенно тщательно необходимо производить в местах прохода труб через обмуровку, обшивку, в зонах максимальных тепловых напряжении - в районе горелок, лючков, лазов, а также в местах гибов экранных труб и на сварных швах.

    Для предупреждения аварии, связанных с утонением стенок труб вследствие сернистой и стояночной коррозии, необходимо при ежегодных технических освидетельствованиях, проводимых администрацией предприятия, производить контроль труб поверхностей нагрева котлов, эксплуатируемых более двух лет.

    Контроль производится внешним осмотром с обстукиванием предварительно очищенных наружных поверхностей труб молотком массой не более 0,5 кг и измерением толщины стенок труб. При этом следует выбирать участки труб, подвергшиеся наибольшему износу и коррозии (горизонтальные участки, участки в отложениях сажи и покрытые коксовыми отложениями).

    Измерение толщины стенок труб производится ультразвуковыми толщиномерами. Возможно вырезание участков труб на двух-трех трубах топочных экранов и трубах конвективного пучка, расположенных на входе газов в него и выходе. Оставшаяся толщина стенок труб должна быть не менее расчетной согласно расчету на прочность (прилагаемого к Паспорту котла) с учетом прибавки на коррозию на период дальнейшей эксплуатации до следующего освидетельствования и прибавки запаса 0,5 мм.

    Расчетная толщина стенки экранных и кипятильных труб для рабочего давления 1,3 МПа (13 кгс/см 2) составляет 0,8 мм, для 2,3 МПа (23 кгс/см 2) – 1,1 мм. Прибавка на коррозию принимается по полученным результатам замеров и с учетом длительности эксплуатации между освидетельствованиями.

    На предприятиях, где в результате длительной эксплуатации не наблюдалось интенсивного износа труб поверхностей нагрева, контроль толщины стенок труб может производится при капитальных ремонтах, но не реже 1 раза в 4 года.

    Внутреннему осмотру подлежат коллектора, пароперегревателя и заднего, экрана. Обязательному вскрытию и осмотру должны быть подвергнуты лючки верхнего коллектора заднего экрана.

    Наружный диаметр труб должен измеряться в зоне максимальных температур. Для измерений применять специальные шаблоны (скобы) или штангенциркуль. На поверхности труб допускаются вмятины с плавными переходами глубиной не более 4 мм, если они не выводят толщину стенки за пределы минусовых отклонений.

    Допускаемая разностенность труб - 10%.

    Результаты осмотра и измерений заносятся в ремонтный формуляр.

    3.2. Проверка барабана.

    Дня выявления участков барабана, поврежденных коррозией, необходимо осмотреть поверхность до внутренней очистки с целью определения интенсивности коррозии измерить глубину разъедания металла.

    Равномерные разъедания измерить по толщине стенки, в которой для этой цели просверлить отверстие диаметром 8 мм. После измерения в отверстие установить пробку и обварить с двух сторон или, в крайнем случае, только изнутри барабана. Измерение можно также производить ультразвуковым толщиномером.

    Основные разъедания и язвины измерить, по оттискам. Для этой цели поврежденный участок поверхности металла очистить от отложений и слегка смазать техническим вазелином. Наиболее точный отпечаток получается, если поврежденный участок расположен на горизонтальной поверхности и в этом случае имеется возможность залить его расплавленным металлом с низкой температурой плавления. Затвердевший металл образует точный слепок поврежденной поверхности.

    Для получения отпечатков, пользоваться третником, баббитом, оловом, по возможности применять гипс.

    Оттиски повреждений, расположенных на вертикальных потолочных поверхностях, получить, используя воск и пластилин.

    Осмотр трубных отверстий, барабанов проводится в следующем порядке.

    После удаления развальцованных труб проверить диаметр отверстий при помощи шаблона. Если шаблон входит в отверстие до упорного выступа, то это означает, что диаметр отверстия увеличен сверх нормы. Измерение точной величины диаметра осуществляется штангенциркулем и отмечается в ремонтном формуляре.

    При контроле сварных швов барабанов необходимо подвергать проверке прилегающий к ним основной металл на ширину 20-25 мм по обе стороны от шва.

    Овальность барабана измеряется не менее чем через каждые 500 мм по длине барабана, в сомнительных случаях и чаще.

    Измерение прогиба барабана осуществляется путем натяжки струны вдоль поверхности барабана и замера зазоров по длине струны.

    Контроль поверхности барабана, трубных отверстий и сварных соединений производится внешним осмотром, методами, магнитопорошковой, цветной и ультразвуковой дефектоскопии.

    Допускаются (не требуют выправки) отдулины и вмятины вне зоны швов и отверстий при условии, что их высота (прогиб), в процентах от наименьшего размера их основания, будет не более:

      в сторону атмосферного давления (отдулины) - 2%;

      в сторону давления пара (вмятины) - 5%.

    Допускаемое уменьшение толщины стенки днища - 15%.

    Допускаемое увеличение диаметра отверстий для труб (под сварку) - 10%.