Солнечная батарея (панель). Солнечные элементы и батареи космического применения Солнечные батареи автоматических космических аппаратов

В настоящее время в НПП «Квант» ведутся работы по трем основным направлениям развития космической фотоэнергетики и ее элементной базы, а именно:

Создание солнечных батарей на основе монокристаллического кремния

Созданные в НПП «Квант» кремниевые солнечные батареи соответствуют мировому уровню, что было подтверждено при выполнении ряда зарубежных заказов по их изготовлению в интересах Индии, Франции, Голландии, Чехии, Израиля, Китая. Эти батареи обладают:

  • наивысшей начальной удельной энергетической характеристикой ~ 200Вт/м 2 ;
  • наименьшей деградацией за срок активного существования;
  • двусторонней чувствительностью, что используется на низколетящих космических аппаратах и позволяет увеличить выходную мощность солнечных батарей на 10-15 % за счет преобразования альбедо Земли (в частности, солнечные батареи для КА «Заря», «Звезда», российского сектора МКС, СБ для КА «Монитор-Э»).

Создание солнечных батарей на основе многокаскадных фотоэлектрических преобразователей с использованием сложных полупроводниковых материалов на инородных подложках.

С помощью солнечных элементов на основе каскадных сложных гетеропереходных структур, использующих тройные и четвертные соединения АIIIВV, наносимые на инородную полупроводниковую подложку, в настоящее время достигнуты максимальный кпд в условиях космоса, наилучшие результаты по удельной мощности, сроку активного существования и минимальной деградации за этот срок. C помощью подобных солнечных элементов освоен диапазон кпд 25-30%. Для целого класса перспективных космических аппаратов, например, крупных геостационарных платформ, а также космических аппаратов, предназначенных для транспортных операций в космосе с использованием электрореактивных двигательных установок, возможность выполнить современные целевые задачи позволяет только использование подобных высокоэффективных солнечных батарей. Учитывая это, а также используя многолетний опыт проектирования солнечных батарей на основе GaAs, НПП «Квант» развивает работы в указанном направлении.

Создание гибких тонкопленочных солнечных батарей на основе аморфного кремния с максимальной удельной энергомассовой характеристикой и минимальной стоимостью.

Это совершенно новое направление в космической фотоэнергетике. Наиболее перспективным типом таких фотоэлектрических преобразователей в настоящее время являются 3-х-каскадные ФЭП на основе аморфного кремния (a-Si). Первоначально созданные для целей наземной фотоэнергетики солнечные батареи из аморфного кремния в настоящее время рассматриваются для использования в условиях космоса, вследствие:

  • возможности получения высоких энергомассовых характеристик солнечных батарей, в 4-5 раз выше, чем у солнечных батарей, изготовленных на основе монокристаллического кремния, несмотря на их меньший начальный кпд;
  • высокой радиационной стойкости;
  • возможности снижения на порядок и более удельной стоимости солнечной батареи по сравнению с монокристаллическим вариантом.

Существенным преимуществом гибких тонкопленочных солнечных батарей является их малый стартовый (транспортный) объем, возможность создания на их основе легко развертываемых солнечных батарей рулонного типа и т.д.

В качестве базовой технологии изготовления фотоэлектрических преобразователей на основе аморфного кремния для космического применения рассматривается освоенная совместным российско-американским предприятием ООО «Совлакс» (соучредители НПП «Квант», ЕСD Ltd.,USA) технология наземного применения. Эта технология обеспечивает формирование каскадной трехпереходной фотоэлектрической структуры на основе сплавов a-Si на тонкой ленточной подложке.

Современные проекты НПП «Квант» в области космической фотоэнергетики

  • МКС: Российский сегмент из модулей «Заря» и «Звезда» с солнечными преобразователями с двусторонней чувствительностью
  • Крупные геостационарные платформы «СиСат», «Экспресс-А», «Экспресс-АМ», «КазСат» и др.
  • Космические аппараты для дистанционного зондирования Земли и метеорологии «Монитор-Э», «Метеор-3» и др.
Основные характеристики солнечных батарей НПП «Квант»
Основные характеристики Моно- кристаллический GalnP2-GalnAs-Ge
трехкаскадные
Аморфный
Удельная мощность СБ при АМ0, 25°С в оптимальной точке ВАХ, Вт/м 2 200 ~350 90-100
Удельная мощность СБ при АМ0, 60°C, в оптимальной точке ВАХ, Вт/м 2 165-170 ~320 80-90
Удельная масса (по фотообразующей части без учёта каркаса), кг/м 2:
- сетчатая подложка
- сотовая подложка
1,7-1,85
1,4-1,5
1,9
1,6
0,3
Деградация рабочего тока за САС, %
- 10 лет GEO
- 10 лет LEO
- 10 лет на эллиптической и промежуточной орбитах
20
20
30
15
15
25
Радиационная
деградация
~7%

Аккумуляторы и солнечные батареи,солнечные батареи, альтернативная энергия, энергия солнца

На первых спутниках Земли аппаратура потребляла относительно небольшие мощности тока и время работы ее было очень непродолжительным. Поэтому в качестве первых космических источников энергии успешно применялись обыкновенные аккумуляторы .

Как известно, на самолете или автомобиле аккумулятор является вспомогательным источником тока и работает совместно с электромашинным генератором, от которого периодически подзаряжается.

Основными достоинствами аккумуляторов являются их высокая надежность и отличные эксплуатационные качества. Существенный недостаток аккумуляторных батарей заключается в большом весе при малой энергоемкости. Например, серебряно-цинковая батарея при емкости 300 а-ч весит около 100 кг . Это означает, что при мощности тока 260 вт (нормальное потребление на обитаемом спутнике «Меркурий») такая батарея будет работать менее двух суток. Удельный вес батареи, характеризующий весовое совершенство источника тока, составит около 450 кг/квт.

Поэтому аккумулятор как автономный источник тока применялся в космосе до сих пор лишь при небольших потребляемых мощностях (до 100 вт) при сроке службы несколько десятков часов.

Для больших автоматических спутников Земли, насыщенных разнообразным оборудованием, потребовались более мощные и легкие источники тока с весьма продолжительным сроком действия — до нескольких недель и даже месяцев.

Такими источниками тока явились чисто космические генераторы — полупроводниковые фотоэлектрические элементы, работающие на принципе преобразования световой энергии солнечного излучения непосредственно в электричество. Эти генераторы называют солнечными батареями .

Мы уже говорили о мощности теплового излучения Солнца. Напомним, что за пределами земной атмосферы интенсивность солнечной радиации довольно значительна: поток энергии, падающей на поверхность перпендикулярную солнечным лучам, составляет 1340 вт на 1 м г. Эту энергию, а вернее, способность солнечной радиации создавать фотоэлектрические эффекты и используют в солнечных батареях. Принцип действия кремниевой солнечной батареи показан на рис. 30.

Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. После облучения такой «вафли» солнечными лучами между слоями возникает поток электронов и образуется разность потенциалов, а во внешней цепи, соединяющей слои, появляется электрический ток.

Толщина кремниевого слоя требуется незначительная, но из-за несовершенства технологии она обычно бывает от 0,5 до 1 мм, хотя в создании тока принимает участие лишь около 2% толщины этого слоя. Поверхность одного элемента солнечной батареи по технологическим причинам получается очень небольшой, что требует последовательного соединения в цепь большого числа элементов.

Кремниевая солнечная батарея дает ток лишь тогда, когда на ее поверхность падают лучи Солнца, причем максимальный съем тока будет при перпендикулярном расположении плоскости батареи по отношению к солнечным лучам. Это означает, что при движении космического корабля или ОКС по орбите необходима постоянная ориентация батарей на Солнце. Батареи не будут давать тока в тени, поэтому их необходимо применять в сочетании с другим источником тока, например с аккумулятором. Последний будет служить не только накопителем, но и демпфером возможных колебаний в величине потребной энергии.

К.п.д. солнечных батарей невелик, он не превышает пока 11-13%. Это значит, что с 1 м 2 современных солнечных батарей снимается, мощность около 100-130 вт. Правда, есть возможности увеличения к.п.д. солнечных батарей (теоретически до 25%) за счет совершенствования их конструкции и улучшения качества полупроводникового слоя. Предлагается, например, накладывать две или несколько батарей одну на другую так, чтобы нижняя поверхность использовала ту часть спектра солнечной энергии, которую пропускает, не поглощая, верхний слой.

К.п.д. батареи зависит от температуры поверхности полупроводникового слоя. Максимальный к. п. д. достигается при 25°С, а при увеличении температуры до 300С к.п.д. уменьшается почти вдвое. Солнечные батареи выгодно применять, так же как аккумуляторы, для небольших потребляемых мощностей тока из-за большой площади их поверхности и высокого удельного веса. Для получения, например, мощности 3 квт требуется батарея, состоящая из 100 000 элементов с общим весом около 300 кг, т.е. при удельном весе 100 кг/квт. Такие батареи займут площадь более 30 м 2 .

Тем не менее солнечные батареи прекрасно зарекомендовали себя в космосе как достаточно надежный и стабильный источник энергии, способный работать очень длительное время.

Главную опасность для солнечных батарей в космосе представляют космическая радиация и метеорная пыль, вызывающие эрозию поверхности кремниевых элементов и ограничивающие срок службы батарей.

Для небольших обитаемых станций этот источник тока, видимо, будет оставаться единственно приемлемым и достаточно эффективным, но крупные ОКС потребуют иных источников энергии, более мощных и с меньшим удельным весом. При этом необходимо учесть трудности получения с помощью солнечных батарей переменного тока, который потребуется для больших научных космических лабораторий.

Изобретение относится к ракетно-космической технике, а именно к элементам конструкции солнечных батарей космических аппаратов. Несущая панель солнечной батареи космического аппарата содержит раму и несущие верхнее и нижнее основания. Между упомянутыми основаниями и рамой герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки. Для сообщения внутренних объемов сот между собой каждый из вариантов изобретения предусматривает выполнение дренажных отверстий в боковых поверхностях каждой соты заполнителя и силовых перегородках. Для сообщения внутренних объемов сот с наружной средой первый вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы, второй вариант изобретения предусматривает выполнение дренажных отверстий в нижнем основании панели равномерно по площади его поверхности, а третий вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности. При этом суммарные площади дренажных отверстий в упомянутых элементах конструкции несущей панели определяются с учетом суммарного объема газовой среды в сотах, коэффициентов расхода дренажных отверстий и максимального по траектории полета ракеты-носителя перепада давлений газовой среды, действующего на основания панели. Изобретение позволяет повысить конструктивную прочность несущих панелей солнечных батарей космического аппарата без увеличения их массы, упростить технологию изготовления и монтажа панелей и повысить надежность их эксплуатации. 3 н.п. ф-лы, 4 ил.


Изобретение относится к области аэрогазодинамики летательных аппаратов (ЛА) и может быть использовано в ракетостроении при проектировании и создании панелей солнечной батареи (СБ) космических аппаратов (КА), выполненных по трехслойной несущей схеме.

Известны и широко применяются в авиации при изготовлении элементов ЛА (фюзеляжа, оперения, крыла и т.д.) панели, выполненные по трехслойной несущей схеме, содержащие каркас (раму), несущее верхнее и нижнее основания, между которыми установлен заполнитель в виде сот .

Предназначенные для восприятия и передачи распределенных нагрузок, действующих на элементы ЛА, панели, выполненные по трехслойной схеме с сотовым заполнителем, обеспечивают большую жесткость и высокую несущую способность. При нагружении панели жесткий на сдвиг и легкий сотовый заполнитель воспринимает поперечный сдвиг и предохраняет тонкие несущие слои от потери устойчивости при продольном сжатии.

К недостаткам этого технического решения следует отнести увеличенный вес элементов каркаса и несущих оснований панелей из-за значительных перепадов давлений, действующих на элементы панели по траектории полета ЛА при изменении высоты полета ЛА.

Известны применяемые в ракетостроении панели СБ КА, предназначенные для установки на них чувствительных элементов (фотоэлектрических преобразователей) системы энергопитания КА. Панели также выполнены по трехслойной несущей схеме и содержат раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, а также силовые перегородки, герметично установленные перпендикулярно основаниям для увеличения жесткости панели . Для уменьшения веса конструкции панелей СБ раму, несущие основания и перегородки выполняют из облегченных материалов.

Несущие панели СБ КА, применяемые в ракетостроении, так же, как и панели, применяемые в авиации, обеспечивают большую жесткость и высокую несущую способность трехслойной конструкции панели СБ с сотовым заполнителем.

К недостаткам этого технического решения следует отнести пониженную конструктивную прочность несущих панелей СБ и возможность потери ее общей и местной устойчивости при отклонении в технологии изготовления и эксплуатации панели, обусловленные более существенными аэрогазодинамическими нагрузками, действующими на элементы панелей СБ КА, по сравнению с авиационными нагрузками. При этом наружное давление, действующее на панель СБ КА по траектории полета ракеты-носителя (РН), изменяется в более широких пределах: от атмосферного (на уровне Земли при старте РН) до практически нулевого при выводе в межпланетное пространство, а давление внутри герметичной панели по траектории полета РН остается атмосферным.

Задачей изобретения является повышение конструктивной прочности несущих панелей СБ КА без увеличения их массы при выводе КА ракетой-носителем в межпланетное пространство.

Задача решается таким образом (вариант 1), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и раме определяют из соотношений:

S 2 [см 2 ] - суммарная площадь дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панелей.

Задача решается также таким образом (вариант 2), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородок выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 3 [см 2 ] - суммарная площадь дренажных отверстий в нижнем основании;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании;

Δ.GIF; Р [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в основаниях панелей от максимального по траектории перепада давлений, действующего на основания панели.

Задача решается также таким образом (вариант 3), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках, раме и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 2 , S 3 [см 2 ] - суммарная площадь дренажных отверстий в раме и нижнем основании, соответственно;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициент расхода дренажных отверстий в раме и нижнем основании панели, соответственно;

Δ.GIF; P [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

Техническими результатами изобретения являются:

Уменьшение перепадов давлений, действующих на основания и чувствительные элементы панели СБ при минимально допустимых перепадах давлений, действующих на стенки сот заполнителя;

Определение эффективной площади дренажных отверстий в сотах, раме, несущих основаниях и перегородках панели;

Определение влияния параметров траектории (числа М, высоты полета Н) на эффективную площадь дренажных отверстий.

Сущность изобретения иллюстрируется схемами панели СБ КА и графиком изменения избыточных давлений, действующих на ее элементы.

На фиг.1, 2 и 3 приведены схемы панели СБ КА, выполненной соответственно в вариантах 1, 2 и 3, и выделены ее фрагменты, где:

2 - верхнее основание;

3 - нижнее основание;

4 - заполнитель;

5 - перегородки;

6 - дренажные отверстия;

7 - чувствительные элементы.

Здесь же стрелками показано направление перетекания газовой среды в сотах заполнителя панели и ее истечение в наружную среду.

На фиг.4 приведена зависимость максимального по траектории полета РН перепада давлений Δ.GIF; Р(Δ.GIF; Р=Рвн-Рнар) газовой среды, действующего на основания панелей, от относительной эффективной площади проходных сечений дренажных отверстий μ.GIF; ·S/V, где:

Рвн - давление газовой среды внутри панели (в сотах заполнителя);

Рнар - давление газовой среды снаружи панели.

Несущая панель СБ КА (фиг.1, 2, 3) содержит раму 1, несущие верхнее основание 2 и нижнее основание 3, а также силовые перегородки 5, установленные перпендикулярно этим основаниям. Между основаниями герметично установлен заполнитель 4 в виде сот. На верхнем основании 2 установлены чувствительные элементы 7 системы энергопитания КА.

В боковых поверхностях каждой соты заполнителя 4 и силовых перегородках 5, в отличие от прототипа, в каждом варианте выполнены дренажные отверстия 6, сообщающие внутренние объемы сот между собой и с наружной средой (см. вид А и разрез по ВВ).

В варианте 1 (фиг.1) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе.

В варианте 2 (фиг.2) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в несущем нижнем основании 3, равномерно расположенных по площади его основания.

В варианте 3 (фиг.3) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе, а также в несущем нижнем основании 3, равномерно расположенных по площади его основания.

Благодаря равномерному расположению дренажных отверстий по площади оснований панели обеспечивается равномерное или близкое к равномерному распределение давления в сотах заполнителя и, следовательно, перепадов давлений, действующих на основания панели. Тем самым исключают концентрации напряжений в местах стыка элементов панели от неравномерных перепадов давлений, что приводит к упрощению технологии изготовления панелей и повышению надежности ее эксплуатации при наличии скрытых дефектов при ее изготовлении, например, при непроклейке отдельных элементов сот заполнителя с несущими основаниями.

Выбор варианта дренирования панелей определяется допустимыми эксплуатационными нагрузками, действующими на основания панелей по траектории полета РН с учетом конструктивных и технологических особенностей изготовления панелей.

Суммарную эффективную площадь дренажных отверстий в раме 1, в сотах заполнителя 4, перегородках 5 и нижнем основании 3 для заданной траектории полета РН определяют по соотношениям (1), (2) и (3), для вариантов 1, 2 и 3 соответственно, с учетом входящих в эти соотношения коэффициентов а, b, зависящих от параметров траектории РН.

Формулы (1), (2) и (3) содержат математическое описание зависимости относительной суммарной эффективной площади дренажных отверстий μ.GIF; ·S/V от максимального по траектории полета РН перепада давлений Δ.GIF; Р и получены по результатам анализа течения газовой среды в системе газодинамических взаимосвязанных емкостей, образованных дренированными сотами заполнителя 4 с силовыми перегородками 5, верхним основанием 2 и нижним основанием 3 с последующим ее истечением в наружную среду.

В ракетостроении раму 1 выполняют из углепластика, несущие основания 2 и 3, а также силовые перегородки 5 - из титана. Заполнитель 4 в виде сот выполняют из алюминиевого сплава и герметично крепят к верхнему основанию 2 и нижнему основанию 3 панели с помощью, например, авиационного клея ВКВ-9. Также к верхнему основанию 2 крепят чувствительные элементы 7 СБ.

Несущая панель СБ КА работает следующим образом.

Поскольку в боковых поверхностях каждой соты заполнителя 4 и элементах панели (фиг.1, 2 и 3), в отличие от прототипа, выполнены дренажные отверстия 6, при полете КА в составе головного блока РН, а также в автономном полете КА, после сброса обтекателей головного блока, происходит перетекание газовой среды между сотами заполнителя 4, силовыми перегородками 5 и истечение ее через дренажные отверстия в раме 1 и нижнем основании 6 в наружную среду (см. разрез по ВВ). Перетекание газовой среды происходит с несущественным запаздыванием выравнивания давления в сотах заполнителя 4.

При этом истечение газовой среды из сот заполнителя 4 в наружную среду происходит с дозвуковой скоростью с незапиранием ее в сотах заполнителя 4, так как суммарные эффективные площади μ.GIF; 2 ·S 2 дренажных отверстий 6 в раме 1 и μ.GIF; 3 ·S 3 - в нижнем основании 3 выполнены больше или равными суммарной эффективной площади μ.GIF; 1 ·S 1 в сотах заполнителя 4 с силовыми перегородками 5 (μ.GIF; 2 ·S 2 ≥.GIF; μ.GIF; 1 ·S 1 , μ.GIF; 3 ·S 3 ≥.GIF; μ.GIF; 1 ·S 1).

При полете КА в составе головного блока РН реализуют максимальный перепад давлений Δ.GIF; Р (фиг.4), действующий на основания панелей 2 и 3, в соответствии с формулами (1), (2) и (3). При этом газовая среда из сот заполнителя 4 перетекает в замкнутый объем под головным обтекателем, максимально допустимый перепад давлений в котором, по сравнению с наружным по траектории полета РН, определяют по известному техническому решению с использованием системы дренирования отсека .

В автономном полете КА внутри панели корпуса устанавливается внутреннее давление Р ВН, близкое к атмосферному (статическому окружающей атмосферы). Перепады Δ.GIF; Р давлений при этом между сотами заполнителя 4, а также внутренним давлением Рвн в сотах заполнителя 4 и наружной средой Рнар, действующие на верхнее основание 2 и нижнее основание 3 панели, близки к нулю.

Таким образом, уменьшают перепады давлений, действующие на элементы панелей и установленные на ней чувствительные элементы системы энергопитания КА. Тем самым повышают конструктивную прочность СБ КА без увеличения массы КА, что приводит к выполнению поставленной задачи.

Кроме того, вследствие уменьшения перепадов давлений, действующих на элементы панелей, упрощается технология изготовления и монтажа панели СБ КА и повышается надежность ее эксплуатации.

Расчеты, проведенные для панели корпуса, разработанной для КА "Ямал" , выводимого РН "Протон", показали, что перепады давлений Δ.GIF; Р, действующие на основания панели, по сравнению с прототипом, уменьшаются на порядок и практически приближаются к нулю.

В настоящее время техническое решение прошло экспериментальную проверку и внедряется на разрабатываемых предприятием КА.

Техническое решение может быть использовано для различных типов КА: околоземных, межпланетных, автоматических, пилотируемых и других КА.

Техническое решение может быть применено и в авиации, например, при использовании панели СБ в составе элемента крыла самолета. В этом случае эффективную площадь дренажных отверстий в элементах панели определяют с учетом максимальных перепадов давлений, действующих на элементы крыла по траектории полета самолета.

Литература

1. Авиация. Энциклопедия. М.: ЦАГИ, 1994 г., стр. 529.

2. На рубеже двух веков (1996-2001 г.). Под ред. акад. Ю.П.Семенова. М.: РКК "Энергия" имени С.П.Королева, 2001 г., стр. 834.

3. Патент RU 2145563 C1.


Формула изобретения


1. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и раме определяется из соотношений

S 2 - суммарная площадь дренажных отверстий в раме, см 2 ;

μ.GIF; 2 - коэффициент расхода дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панели.

2. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 3 - суммарная площадь дренажных отверстий в нижнем основании панели, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании панели;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.

3. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках, раме и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

μ.GIF; 2 ·S 2 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

μ.GIF; 3 ·S 3 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 2 , S 3 - суммарные площади дренажных отверстий в раме и нижнем основании панели соответственно, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициенты расхода дренажных отверстий в раме и нижнем основании панели соответственно;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме и нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.


Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.


1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).


6a

6b

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

9a

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн».

На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

10a

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления.
В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

17a

17b

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

18a

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.


Фотографии: © drugoi

P.S. Блог вице-президента по маркетингу компании «Очаково»

Солнечные батареи зачастую бывают довольно больших размеров, поэтому сложно подобрать такие объекты недвижимости, на которых их можно было бы разместить. Одна швейцарская компания разработала новый подход и нашла свои пути решения этой проблемы. Компания запускает плавающий остров, покрытый солнечными батареями на озеро Невшатель. Каждый из трех запланированных островов диаметром 25 метров сможет разместить на себе 100 фотоэлектрических панелей, которые будут работать на протяжении следующих 25 лет. Острова так же будут использованы в научно-исследовательских целях.

В последнее время, судоходные компании все чаще и чаще прибегают к использованию интенсивной солнечной энергетики, размещая на борту панели солнечных батарей. Впервые солнечные батареи на корабле были размещены в Шанхае в 2010 году. Корабль был оснащен огромной солнечной батареей, сделанной в виде паруса. По такому же принципу сделана яхта Turanor PlanetSolar, которая совсем недавно завершила кругосветное плавание, используя солнечную энергетику.

Солнечные батареи в небе

2013 года стал рекордным годом по использованию солнечных батарей в качестве источника энергии для самолетов. Компания Solar Impulse разработала самолет, совершивший самый продолжительный полет с использованием солнечной энергии. Самолет пролетел через всю Америку этим летом.

Разумеется, летать на солнечной энергии, пока что могут только небольшие, беспилотные самолеты. Солнечные батареи значительно облегчают конструкцию дронов, и увеличивают время их возможного пребывания в воздухе.

Одним из примеров использования солнечных батарей в воздухе является подъемник, размещенный высоко в горах, который способен подымать людей на вершину горы с помощью солнечной энергии.

Солнечные батареи в космосе

Исследователи Университета Карнеги-Меллона создали прототип разведочного ровера, который в будущем, планируется отправить на Луну, на ракете SpaceX. Устройство, называемое Polaris, полностью работает на солнечной энергии. Polaris будет использован для изучения полярных лунных широт. Ровер оснащен специальным программным обеспечением, которое поможет ему работать в более темных областях спутника.

Вы так же наверняка слышали о большом количестве космического мусора на орбите. Было бы неплохо восстановить эти спутники и вернуть их на землю для ремонта и дальнейшего возвращения на орбиту. Эта идея легла в основу новой концепции Solara, устройства работающего на солнечных батареях и не требующего постоянного ремонта. Атмосферный спутник разработан компанией Titan Aerospace. Solara способен работать в высочайших слоях атмосферы на протяжении пяти лет подряд.

Последней и самой амбициозной надеждой является проект японской фирмы, которая планирует построить массив солнечных батарей вокруг экватора Луны, а затем запустить луч энергии обратно на Землю. На создание «Кольца Луны » уйдет около 30 лет. По предположениям специалистов компании лунное кольцо будет генерировать до 13000 ТВт (тераватт) постоянной энергии.